993 lines
164 KiB
HTML
993 lines
164 KiB
HTML
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>Unit 4: Motion in Two and Three Dimensions</title><style>
|
||
/* cspell:disable-file */
|
||
/* webkit printing magic: print all background colors */
|
||
html {
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
* {
|
||
box-sizing: border-box;
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
|
||
html,
|
||
body {
|
||
margin: 0;
|
||
padding: 0;
|
||
}
|
||
@media only screen {
|
||
body {
|
||
margin: 2em auto;
|
||
max-width: 900px;
|
||
color: rgb(55, 53, 47);
|
||
}
|
||
}
|
||
|
||
body {
|
||
line-height: 1.5;
|
||
white-space: pre-wrap;
|
||
}
|
||
|
||
a,
|
||
a.visited {
|
||
color: inherit;
|
||
text-decoration: underline;
|
||
}
|
||
|
||
.pdf-relative-link-path {
|
||
font-size: 80%;
|
||
color: #444;
|
||
}
|
||
|
||
h1,
|
||
h2,
|
||
h3 {
|
||
letter-spacing: -0.01em;
|
||
line-height: 1.2;
|
||
font-weight: 600;
|
||
margin-bottom: 0;
|
||
}
|
||
|
||
.page-title {
|
||
font-size: 2.5rem;
|
||
font-weight: 700;
|
||
margin-top: 0;
|
||
margin-bottom: 0.75em;
|
||
}
|
||
|
||
h1 {
|
||
font-size: 1.875rem;
|
||
margin-top: 1.875rem;
|
||
}
|
||
|
||
h2 {
|
||
font-size: 1.5rem;
|
||
margin-top: 1.5rem;
|
||
}
|
||
|
||
h3 {
|
||
font-size: 1.25rem;
|
||
margin-top: 1.25rem;
|
||
}
|
||
|
||
.source {
|
||
border: 1px solid #ddd;
|
||
border-radius: 3px;
|
||
padding: 1.5em;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.callout {
|
||
border-radius: 3px;
|
||
padding: 1rem;
|
||
}
|
||
|
||
figure {
|
||
margin: 1.25em 0;
|
||
page-break-inside: avoid;
|
||
}
|
||
|
||
figcaption {
|
||
opacity: 0.5;
|
||
font-size: 85%;
|
||
margin-top: 0.5em;
|
||
}
|
||
|
||
mark {
|
||
background-color: transparent;
|
||
}
|
||
|
||
.indented {
|
||
padding-left: 1.5em;
|
||
}
|
||
|
||
hr {
|
||
background: transparent;
|
||
display: block;
|
||
width: 100%;
|
||
height: 1px;
|
||
visibility: visible;
|
||
border: none;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
|
||
}
|
||
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
|
||
@media only print {
|
||
img {
|
||
max-height: 100vh;
|
||
object-fit: contain;
|
||
}
|
||
}
|
||
|
||
@page {
|
||
margin: 1in;
|
||
}
|
||
|
||
.collection-content {
|
||
font-size: 0.875rem;
|
||
}
|
||
|
||
.column-list {
|
||
display: flex;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.column {
|
||
padding: 0 1em;
|
||
}
|
||
|
||
.column:first-child {
|
||
padding-left: 0;
|
||
}
|
||
|
||
.column:last-child {
|
||
padding-right: 0;
|
||
}
|
||
|
||
.table_of_contents-item {
|
||
display: block;
|
||
font-size: 0.875rem;
|
||
line-height: 1.3;
|
||
padding: 0.125rem;
|
||
}
|
||
|
||
.table_of_contents-indent-1 {
|
||
margin-left: 1.5rem;
|
||
}
|
||
|
||
.table_of_contents-indent-2 {
|
||
margin-left: 3rem;
|
||
}
|
||
|
||
.table_of_contents-indent-3 {
|
||
margin-left: 4.5rem;
|
||
}
|
||
|
||
.table_of_contents-link {
|
||
text-decoration: none;
|
||
opacity: 0.7;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
|
||
}
|
||
|
||
table,
|
||
th,
|
||
td {
|
||
border: 1px solid rgba(55, 53, 47, 0.09);
|
||
border-collapse: collapse;
|
||
}
|
||
|
||
table {
|
||
border-left: none;
|
||
border-right: none;
|
||
}
|
||
|
||
th,
|
||
td {
|
||
font-weight: normal;
|
||
padding: 0.25em 0.5em;
|
||
line-height: 1.5;
|
||
min-height: 1.5em;
|
||
text-align: left;
|
||
}
|
||
|
||
th {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
}
|
||
|
||
ol,
|
||
ul {
|
||
margin: 0;
|
||
margin-block-start: 0.6em;
|
||
margin-block-end: 0.6em;
|
||
}
|
||
|
||
li > ol:first-child,
|
||
li > ul:first-child {
|
||
margin-block-start: 0.6em;
|
||
}
|
||
|
||
ul > li {
|
||
list-style: disc;
|
||
}
|
||
|
||
ul.to-do-list {
|
||
text-indent: -1.7em;
|
||
}
|
||
|
||
ul.to-do-list > li {
|
||
list-style: none;
|
||
}
|
||
|
||
.to-do-children-checked {
|
||
text-decoration: line-through;
|
||
opacity: 0.375;
|
||
}
|
||
|
||
ul.toggle > li {
|
||
list-style: none;
|
||
}
|
||
|
||
ul {
|
||
padding-inline-start: 1.7em;
|
||
}
|
||
|
||
ul > li {
|
||
padding-left: 0.1em;
|
||
}
|
||
|
||
ol {
|
||
padding-inline-start: 1.6em;
|
||
}
|
||
|
||
ol > li {
|
||
padding-left: 0.2em;
|
||
}
|
||
|
||
.mono ol {
|
||
padding-inline-start: 2em;
|
||
}
|
||
|
||
.mono ol > li {
|
||
text-indent: -0.4em;
|
||
}
|
||
|
||
.toggle {
|
||
padding-inline-start: 0em;
|
||
list-style-type: none;
|
||
}
|
||
|
||
/* Indent toggle children */
|
||
.toggle > li > details {
|
||
padding-left: 1.7em;
|
||
}
|
||
|
||
.toggle > li > details > summary {
|
||
margin-left: -1.1em;
|
||
}
|
||
|
||
.selected-value {
|
||
display: inline-block;
|
||
padding: 0 0.5em;
|
||
background: rgba(206, 205, 202, 0.5);
|
||
border-radius: 3px;
|
||
margin-right: 0.5em;
|
||
margin-top: 0.3em;
|
||
margin-bottom: 0.3em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.collection-title {
|
||
display: inline-block;
|
||
margin-right: 1em;
|
||
}
|
||
|
||
.simple-table {
|
||
margin-top: 1em;
|
||
font-size: 0.875rem;
|
||
empty-cells: show;
|
||
}
|
||
.simple-table td {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table th {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table-header-color {
|
||
background: rgb(247, 246, 243);
|
||
color: black;
|
||
}
|
||
.simple-table-header {
|
||
font-weight: 500;
|
||
}
|
||
|
||
time {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
.icon {
|
||
display: inline-block;
|
||
max-width: 1.2em;
|
||
max-height: 1.2em;
|
||
text-decoration: none;
|
||
vertical-align: text-bottom;
|
||
margin-right: 0.5em;
|
||
}
|
||
|
||
img.icon {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.user-icon {
|
||
width: 1.5em;
|
||
height: 1.5em;
|
||
border-radius: 100%;
|
||
margin-right: 0.5rem;
|
||
}
|
||
|
||
.user-icon-inner {
|
||
font-size: 0.8em;
|
||
}
|
||
|
||
.text-icon {
|
||
border: 1px solid #000;
|
||
text-align: center;
|
||
}
|
||
|
||
.page-cover-image {
|
||
display: block;
|
||
object-fit: cover;
|
||
width: 100%;
|
||
max-height: 30vh;
|
||
}
|
||
|
||
.page-header-icon {
|
||
font-size: 3rem;
|
||
margin-bottom: 1rem;
|
||
}
|
||
|
||
.page-header-icon-with-cover {
|
||
margin-top: -0.72em;
|
||
margin-left: 0.07em;
|
||
}
|
||
|
||
.page-header-icon img {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.link-to-page {
|
||
margin: 1em 0;
|
||
padding: 0;
|
||
border: none;
|
||
font-weight: 500;
|
||
}
|
||
|
||
p > .user {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
td > .user,
|
||
td > time {
|
||
white-space: nowrap;
|
||
}
|
||
|
||
input[type="checkbox"] {
|
||
transform: scale(1.5);
|
||
margin-right: 0.6em;
|
||
vertical-align: middle;
|
||
}
|
||
|
||
p {
|
||
margin-top: 0.5em;
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
.image {
|
||
border: none;
|
||
margin: 1.5em 0;
|
||
padding: 0;
|
||
border-radius: 0;
|
||
text-align: center;
|
||
}
|
||
|
||
.code,
|
||
code {
|
||
background: rgba(135, 131, 120, 0.15);
|
||
border-radius: 3px;
|
||
padding: 0.2em 0.4em;
|
||
border-radius: 3px;
|
||
font-size: 85%;
|
||
tab-size: 2;
|
||
}
|
||
|
||
code {
|
||
color: #eb5757;
|
||
}
|
||
|
||
.code {
|
||
padding: 1.5em 1em;
|
||
}
|
||
|
||
.code-wrap {
|
||
white-space: pre-wrap;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.code > code {
|
||
background: none;
|
||
padding: 0;
|
||
font-size: 100%;
|
||
color: inherit;
|
||
}
|
||
|
||
blockquote {
|
||
font-size: 1.25em;
|
||
margin: 1em 0;
|
||
padding-left: 1em;
|
||
border-left: 3px solid rgb(55, 53, 47);
|
||
}
|
||
|
||
.bookmark {
|
||
text-decoration: none;
|
||
max-height: 8em;
|
||
padding: 0;
|
||
display: flex;
|
||
width: 100%;
|
||
align-items: stretch;
|
||
}
|
||
|
||
.bookmark-title {
|
||
font-size: 0.85em;
|
||
overflow: hidden;
|
||
text-overflow: ellipsis;
|
||
height: 1.75em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.bookmark-text {
|
||
display: flex;
|
||
flex-direction: column;
|
||
}
|
||
|
||
.bookmark-info {
|
||
flex: 4 1 180px;
|
||
padding: 12px 14px 14px;
|
||
display: flex;
|
||
flex-direction: column;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.bookmark-image {
|
||
width: 33%;
|
||
flex: 1 1 180px;
|
||
display: block;
|
||
position: relative;
|
||
object-fit: cover;
|
||
border-radius: 1px;
|
||
}
|
||
|
||
.bookmark-description {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
font-size: 0.75em;
|
||
overflow: hidden;
|
||
max-height: 4.5em;
|
||
word-break: break-word;
|
||
}
|
||
|
||
.bookmark-href {
|
||
font-size: 0.75em;
|
||
margin-top: 0.25em;
|
||
}
|
||
|
||
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
|
||
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
|
||
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
|
||
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
|
||
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
|
||
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
|
||
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
|
||
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
|
||
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
|
||
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
|
||
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
|
||
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
|
||
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.highlight-default {
|
||
color: rgba(55, 53, 47, 1);
|
||
}
|
||
.highlight-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.highlight-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.highlight-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.highlight-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.highlight-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.highlight-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.highlight-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.highlight-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.highlight-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.highlight-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.highlight-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.highlight-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.highlight-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.highlight-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.highlight-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.highlight-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.highlight-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.highlight-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.block-color-default {
|
||
color: inherit;
|
||
fill: inherit;
|
||
}
|
||
.block-color-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.block-color-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.block-color-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.block-color-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.block-color-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.block-color-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.block-color-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.block-color-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.block-color-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.block-color-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.block-color-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.block-color-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.block-color-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.block-color-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.block-color-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.block-color-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.block-color-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.block-color-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
|
||
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
|
||
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
|
||
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
|
||
.select-value-color-opaquegray { background-color: rgba(255, 255, 255, 0.0375); }
|
||
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
|
||
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
|
||
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
|
||
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
|
||
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
|
||
|
||
.checkbox {
|
||
display: inline-flex;
|
||
vertical-align: text-bottom;
|
||
width: 16;
|
||
height: 16;
|
||
background-size: 16px;
|
||
margin-left: 2px;
|
||
margin-right: 5px;
|
||
}
|
||
|
||
.checkbox-on {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
.checkbox-off {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
</style></head><body><article id="f63d4dd2-9b33-46f1-8477-5c2428bdb59b" class="page sans"><header><h1 class="page-title">Unit 4: Motion in Two and Three Dimensions</h1></header><div class="page-body"><h1 id="6a40aea3-c5a7-43c2-9756-a21c46b35651" class="">Position and Displacement</h1><p id="6a532177-6aaa-44dd-9827-1eb32d506e04" class="">One general way of locating a particle (or particle-like object) is with a position vector <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>, which is a vector that extends from a reference point (usually the origin) to the particle. In the unit-vector notation:</p><figure id="62950240-3930-437c-8b1d-789720e99be0" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mo>=</mo><mi>x</mi><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi>y</mi><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><mi>z</mi><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\vec r = x\hat i + y\hat j + z\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.00629em;vertical-align:-0.08333em;"></span><span class="mord mathnormal">x</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1174em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9578799999999998em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="8045498d-144d-463b-ac47-5811cd2443e5" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mover accent="true"><mi>i</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">x\hat i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.92296em;vertical-align:0em;"></span><span class="mord mathnormal">x</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi><mover accent="true"><mi>j</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">y\hat j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1174em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span></span></span></span><span></span></span>, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">z\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9578799999999998em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span> are the vector components of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and the coefficients <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span><span></span></span>, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi></mrow><annotation encoding="application/x-tex">z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span></span><span></span></span> are its scalar components.</p><p id="3f64386c-d684-4928-af94-e47256e81b57" class="">As a particle moves, its position vector changes in such a way that the vector always extends to the particle from the reference point (the origin). If the position vector changes—say, from <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\vec r_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> to <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\vec r_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> during a certain time interval—then the particle’s displacement <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\Delta \vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> during that time interval is</p><figure id="21a7eab2-0dfa-447d-bc87-11bed73ffb35" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mo>=</mo><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mn>2</mn></msub><mo>−</mo><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">
|
||
\Delta \vec r = \vec r_2 - \vec r_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="9fb1c4f9-a81c-4b71-a546-cd059004b249" class="">This can be rewritten using unit vector notation as follows:</p><figure id="b465b3de-c479-40d5-904f-be3ea517479f" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>−</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>2</mn></msub><mo>−</mo><msub><mi>y</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><mo stretchy="false">(</mo><msub><mi>z</mi><mn>2</mn></msub><mo>−</mo><msub><mi>z</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\Delta \vec r = (x_2 - x_1)\hat i + (y_2 - y_1)\hat j + (z_2 - z_1)\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2078799999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="f1c33355-c83b-49d7-970b-07bea4795036" class="">or more simply</p><figure id="463aeb25-aad0-4412-82b6-498c16ff3c54" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mo>=</mo><mi mathvariant="normal">Δ</mi><mi>x</mi><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><mi mathvariant="normal">Δ</mi><mi>y</mi><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><mi mathvariant="normal">Δ</mi><mi>z</mi><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\Delta \vec r = \Delta x \hat i + \Delta y \hat j + \Delta z \hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.00629em;vertical-align:-0.08333em;"></span><span class="mord">Δ</span><span class="mord mathnormal">x</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1174em;vertical-align:-0.19444em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9578799999999998em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><h1 id="f0cb6585-e377-48cd-9609-a13bdacb3f2a" class="">Average and Instantaneous Velocity</h1><p id="c9eba1df-6d87-429f-b889-675d0806fa98" class="">If a particle moves through a displacement <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\Delta \vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>in a time interval <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span>, then its
|
||
<strong>average velocity </strong><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{avg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is</p><figure id="27a74ec9-bc3b-4b71-9dbb-cb0a02a45161" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec v_{avg} = \frac{\Delta \vec r}{\Delta t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="6b79f6eb-7d7a-4bbc-acc1-162446f8618a" class="">The direction of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{avg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> must be the same as that of the displacement <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\Delta \vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>. This formula can also be written in components:</p><figure id="11491cbc-8f11-4b73-ac9d-46fe555b6e84" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>x</mi></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>y</mi></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mi>z</mi></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\vec v_{avg} = \frac{\Delta x}{\Delta t}\hat i + \frac{\Delta y}{\Delta t}\hat j + \frac{\Delta z}{\Delta t}\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.0463299999999998em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.3603299999999998em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.04633em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="c104f59d-4f3e-4792-9d21-1e518ca2c2b4" class="">When we speak of the velocity of a particle, we usually mean the particle’s instantaneous velocity <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> at some instant. This <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the value that <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{avg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> approaches in the limit as we shrink the time interval <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span> to 0 about that instant. Using the language of calculus, we may write <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> as the derivative.</p><figure id="dc640cd1-3040-4363-87c1-d3eb4be95593" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mo>=</mo><mfrac><mrow><mi>d</mi><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec v = \frac{d \vec r}{dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><h1 id="6e213e91-cc47-462e-a333-961e887d36df" class="">Average Acceleration and Instantaneous Acceleration</h1><p id="c8b64831-b0c9-40b0-bf2d-321d7ecf751a" class="">When a particle’s velocity changes from <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">\vec v_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> to <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">\vec v_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> in a time interval <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span>, its average acceleration <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec a_{vg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> during <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span> is:</p><figure id="a66d9e75-61a6-4f29-8724-72836092bbc6" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec a_{avg} = \frac{\Delta \vec v}{\Delta t}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="3b00d144-8416-4770-9962-49e3c54215ed" class="">If we shrink <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span><em> </em>to zero about some instant, then in the limit <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec a_{avg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> approaches the <strong>instantaneous acceleration </strong>(or <strong>acceleration</strong>) <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>at that instant; that is,</p><figure id="a09936ff-cc86-45ad-8588-bca9d2dd007f" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>=</mo><mfrac><mrow><mi>d</mi><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec a = \frac{d \vec v}{dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="7e6e022d-70cb-4915-aa3e-64cbdead4ddb" class="">If the velocity changes in either magnitude or direction (or both), the particle must have an acceleration.</p><p id="4290a123-4dd2-4317-96c3-173e45216384" class="">This equation can also be written in vector form as</p><figure id="531651e5-51ac-44cd-9162-2e2931f04891" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>=</mo><mfrac><mrow><mi>d</mi><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mi>x</mi></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><mfrac><mrow><mi>d</mi><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mi>y</mi></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><mfrac><mrow><mi>d</mi><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mi>z</mi></msub></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\vec a = \frac{d\vec v_x}{dt}\hat i + \frac{d\vec v_y}{dt}\hat j + \frac{d\vec v_z}{dt}\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="1991947b-9fd6-469a-8128-36fc0e343334" class="">The scalar components of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> can be found by differentiating the scalar components of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>.</p><h1 id="c1810c85-2f1e-4c3d-a891-7006179e0d06" class="">Particle Motion</h1><p id="4e820d27-a985-41ed-a5eb-3c904ec30ce3" class="">
|
||
</p><h1 id="1bbcf7df-74fc-49aa-b27c-e9dec6751d16" class="">Uniform Circular Motion</h1><p id="43b7d36e-f1fd-4673-adfe-93ed07101a5b" class="">
|
||
</p><h1 id="6d3e372a-3887-4dfd-aa96-153fba24c7de" class="">Relative Motion</h1><p id="89d57f90-1123-4997-8d07-e679dc550298" class="">The velocity of a particle depends on the <strong>reference frame</strong> of whoever is observing or measuring the velocity. For our purposes, a reference frame is the physical object to which we attach our coordinate system. In everyday life, that object is the ground. For example, the speed listed on a speeding ticket is always measured relative to the ground. The speed relative to the police officer would be different if the officer were moving while making the speed measurement.</p><p id="106cdce5-ad30-4d0d-be1a-93208c63ab8b" class="">When two frames of reference A and B are moving relative to each other at constant velocity, the velocity of a particle P as measured by an observer in frame A usually differs from that measured from frame B. The two measured velocities are related by:</p><figure id="727adb8b-039f-437e-ac94-b708d6aa9445" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>A</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>B</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>B</mi><mi>A</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{PA} = \vec v_{PB} + \vec v_{BA}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">PB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="daa60afd-6781-4163-8402-70d2f99f4683" class="">Where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>B</mi><mi>A</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{BA}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>is the velocity of <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05017em;">B</span></span></span></span></span><span></span></span></em><em> </em>with respect to <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">A</span></span></span></span></span><span></span></span></em>. Both observers measure the same acceleration for the particle:</p><figure id="180b7b3d-6b41-4e9b-bedc-3a16184c40f9" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>A</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec a_{PA} = \vec a_{PB}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">PB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><h2 id="2a29fd5e-cd8b-4b87-bac4-abc7084d22b1" class="">Two Dimensions</h2><div id="23a45377-36ae-4b1d-9653-2686417f2e23" class="column-list"><div id="1e558b27-2ae6-4be8-9f13-cc0a0547613b" style="width:106.25%" class="column"><figure id="a6e9aed8-7a68-437c-8af9-1b48803ba850" class="image"><a href="Unit%204%20Motion%20in%20Two%20and%20Three%20Dimensions%20f63d4dd29b3346f184775c2428bdb59b/Untitled.png"><img style="width:384px" src="Unit%204%20Motion%20in%20Two%20and%20Three%20Dimensions%20f63d4dd29b3346f184775c2428bdb59b/Untitled.png"/></a></figure></div><div id="ed894c59-c50e-4691-b926-70043261f06b" style="width:75%" class="column"><p id="81a7291b-c0cd-4495-9c19-f006b109cf21" class="">
|
||
</p></div></div><p id="b33d89cb-50bc-4c51-bb1d-22ce838f1997" class="">In this scenario, the head-to tail vectors can be arranged to get the following formula:</p><figure id="5db02e5c-60bb-4cca-a5b9-93063b10fe22" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>A</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>B</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>r</mi><mo>⃗</mo></mover><mrow><mi>B</mi><mi>A</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec r_{PA} = \vec r_{PB} + \vec r_{BA}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">PB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="a59b9d8a-92c3-49b3-ad3e-871375fcfd1b" class="">Taking the time derivative gives a similar formula for velocity: </p><figure id="2b201752-edc6-4399-827e-d0beb0b317b9" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>A</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>B</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>B</mi><mi>A</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec v_{PA} = \vec v_{PB} + \vec v_{BA}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">PB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">B</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="1b358005-43e6-4305-90fd-746955cc5da8" class="">And the following equation for acceleration:</p><figure id="9b2c172e-58b2-4cfa-a969-a463fcffa14e" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>A</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>P</mi><mi>B</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec a_{PA} = \vec a_{PB}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.13889em;">P</span><span class="mord mathnormal mtight">A</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight" style="margin-right:0.05017em;">PB</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="df142a74-6237-4ed4-a327-636e7e36ccdc" class="">As for one-dimensional motion, we have the following rule: Observers on different frames of reference that move at constant velocity relative to each other will measure the same acceleration for a moving particle.</p><p id="6788e11b-ce38-4755-9c92-ac6f78117eb2" class="">
|
||
</p></div></article></body></html> |