1047 lines
188 KiB
HTML
1047 lines
188 KiB
HTML
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>Unit 3: Vectors</title><style>
|
||
/* cspell:disable-file */
|
||
/* webkit printing magic: print all background colors */
|
||
html {
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
* {
|
||
box-sizing: border-box;
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
|
||
html,
|
||
body {
|
||
margin: 0;
|
||
padding: 0;
|
||
}
|
||
@media only screen {
|
||
body {
|
||
margin: 2em auto;
|
||
max-width: 900px;
|
||
color: rgb(55, 53, 47);
|
||
}
|
||
}
|
||
|
||
body {
|
||
line-height: 1.5;
|
||
white-space: pre-wrap;
|
||
}
|
||
|
||
a,
|
||
a.visited {
|
||
color: inherit;
|
||
text-decoration: underline;
|
||
}
|
||
|
||
.pdf-relative-link-path {
|
||
font-size: 80%;
|
||
color: #444;
|
||
}
|
||
|
||
h1,
|
||
h2,
|
||
h3 {
|
||
letter-spacing: -0.01em;
|
||
line-height: 1.2;
|
||
font-weight: 600;
|
||
margin-bottom: 0;
|
||
}
|
||
|
||
.page-title {
|
||
font-size: 2.5rem;
|
||
font-weight: 700;
|
||
margin-top: 0;
|
||
margin-bottom: 0.75em;
|
||
}
|
||
|
||
h1 {
|
||
font-size: 1.875rem;
|
||
margin-top: 1.875rem;
|
||
}
|
||
|
||
h2 {
|
||
font-size: 1.5rem;
|
||
margin-top: 1.5rem;
|
||
}
|
||
|
||
h3 {
|
||
font-size: 1.25rem;
|
||
margin-top: 1.25rem;
|
||
}
|
||
|
||
.source {
|
||
border: 1px solid #ddd;
|
||
border-radius: 3px;
|
||
padding: 1.5em;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.callout {
|
||
border-radius: 3px;
|
||
padding: 1rem;
|
||
}
|
||
|
||
figure {
|
||
margin: 1.25em 0;
|
||
page-break-inside: avoid;
|
||
}
|
||
|
||
figcaption {
|
||
opacity: 0.5;
|
||
font-size: 85%;
|
||
margin-top: 0.5em;
|
||
}
|
||
|
||
mark {
|
||
background-color: transparent;
|
||
}
|
||
|
||
.indented {
|
||
padding-left: 1.5em;
|
||
}
|
||
|
||
hr {
|
||
background: transparent;
|
||
display: block;
|
||
width: 100%;
|
||
height: 1px;
|
||
visibility: visible;
|
||
border: none;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
|
||
}
|
||
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
|
||
@media only print {
|
||
img {
|
||
max-height: 100vh;
|
||
object-fit: contain;
|
||
}
|
||
}
|
||
|
||
@page {
|
||
margin: 1in;
|
||
}
|
||
|
||
.collection-content {
|
||
font-size: 0.875rem;
|
||
}
|
||
|
||
.column-list {
|
||
display: flex;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.column {
|
||
padding: 0 1em;
|
||
}
|
||
|
||
.column:first-child {
|
||
padding-left: 0;
|
||
}
|
||
|
||
.column:last-child {
|
||
padding-right: 0;
|
||
}
|
||
|
||
.table_of_contents-item {
|
||
display: block;
|
||
font-size: 0.875rem;
|
||
line-height: 1.3;
|
||
padding: 0.125rem;
|
||
}
|
||
|
||
.table_of_contents-indent-1 {
|
||
margin-left: 1.5rem;
|
||
}
|
||
|
||
.table_of_contents-indent-2 {
|
||
margin-left: 3rem;
|
||
}
|
||
|
||
.table_of_contents-indent-3 {
|
||
margin-left: 4.5rem;
|
||
}
|
||
|
||
.table_of_contents-link {
|
||
text-decoration: none;
|
||
opacity: 0.7;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
|
||
}
|
||
|
||
table,
|
||
th,
|
||
td {
|
||
border: 1px solid rgba(55, 53, 47, 0.09);
|
||
border-collapse: collapse;
|
||
}
|
||
|
||
table {
|
||
border-left: none;
|
||
border-right: none;
|
||
}
|
||
|
||
th,
|
||
td {
|
||
font-weight: normal;
|
||
padding: 0.25em 0.5em;
|
||
line-height: 1.5;
|
||
min-height: 1.5em;
|
||
text-align: left;
|
||
}
|
||
|
||
th {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
}
|
||
|
||
ol,
|
||
ul {
|
||
margin: 0;
|
||
margin-block-start: 0.6em;
|
||
margin-block-end: 0.6em;
|
||
}
|
||
|
||
li > ol:first-child,
|
||
li > ul:first-child {
|
||
margin-block-start: 0.6em;
|
||
}
|
||
|
||
ul > li {
|
||
list-style: disc;
|
||
}
|
||
|
||
ul.to-do-list {
|
||
text-indent: -1.7em;
|
||
}
|
||
|
||
ul.to-do-list > li {
|
||
list-style: none;
|
||
}
|
||
|
||
.to-do-children-checked {
|
||
text-decoration: line-through;
|
||
opacity: 0.375;
|
||
}
|
||
|
||
ul.toggle > li {
|
||
list-style: none;
|
||
}
|
||
|
||
ul {
|
||
padding-inline-start: 1.7em;
|
||
}
|
||
|
||
ul > li {
|
||
padding-left: 0.1em;
|
||
}
|
||
|
||
ol {
|
||
padding-inline-start: 1.6em;
|
||
}
|
||
|
||
ol > li {
|
||
padding-left: 0.2em;
|
||
}
|
||
|
||
.mono ol {
|
||
padding-inline-start: 2em;
|
||
}
|
||
|
||
.mono ol > li {
|
||
text-indent: -0.4em;
|
||
}
|
||
|
||
.toggle {
|
||
padding-inline-start: 0em;
|
||
list-style-type: none;
|
||
}
|
||
|
||
/* Indent toggle children */
|
||
.toggle > li > details {
|
||
padding-left: 1.7em;
|
||
}
|
||
|
||
.toggle > li > details > summary {
|
||
margin-left: -1.1em;
|
||
}
|
||
|
||
.selected-value {
|
||
display: inline-block;
|
||
padding: 0 0.5em;
|
||
background: rgba(206, 205, 202, 0.5);
|
||
border-radius: 3px;
|
||
margin-right: 0.5em;
|
||
margin-top: 0.3em;
|
||
margin-bottom: 0.3em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.collection-title {
|
||
display: inline-block;
|
||
margin-right: 1em;
|
||
}
|
||
|
||
.simple-table {
|
||
margin-top: 1em;
|
||
font-size: 0.875rem;
|
||
empty-cells: show;
|
||
}
|
||
.simple-table td {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table th {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table-header-color {
|
||
background: rgb(247, 246, 243);
|
||
color: black;
|
||
}
|
||
.simple-table-header {
|
||
font-weight: 500;
|
||
}
|
||
|
||
time {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
.icon {
|
||
display: inline-block;
|
||
max-width: 1.2em;
|
||
max-height: 1.2em;
|
||
text-decoration: none;
|
||
vertical-align: text-bottom;
|
||
margin-right: 0.5em;
|
||
}
|
||
|
||
img.icon {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.user-icon {
|
||
width: 1.5em;
|
||
height: 1.5em;
|
||
border-radius: 100%;
|
||
margin-right: 0.5rem;
|
||
}
|
||
|
||
.user-icon-inner {
|
||
font-size: 0.8em;
|
||
}
|
||
|
||
.text-icon {
|
||
border: 1px solid #000;
|
||
text-align: center;
|
||
}
|
||
|
||
.page-cover-image {
|
||
display: block;
|
||
object-fit: cover;
|
||
width: 100%;
|
||
max-height: 30vh;
|
||
}
|
||
|
||
.page-header-icon {
|
||
font-size: 3rem;
|
||
margin-bottom: 1rem;
|
||
}
|
||
|
||
.page-header-icon-with-cover {
|
||
margin-top: -0.72em;
|
||
margin-left: 0.07em;
|
||
}
|
||
|
||
.page-header-icon img {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.link-to-page {
|
||
margin: 1em 0;
|
||
padding: 0;
|
||
border: none;
|
||
font-weight: 500;
|
||
}
|
||
|
||
p > .user {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
td > .user,
|
||
td > time {
|
||
white-space: nowrap;
|
||
}
|
||
|
||
input[type="checkbox"] {
|
||
transform: scale(1.5);
|
||
margin-right: 0.6em;
|
||
vertical-align: middle;
|
||
}
|
||
|
||
p {
|
||
margin-top: 0.5em;
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
.image {
|
||
border: none;
|
||
margin: 1.5em 0;
|
||
padding: 0;
|
||
border-radius: 0;
|
||
text-align: center;
|
||
}
|
||
|
||
.code,
|
||
code {
|
||
background: rgba(135, 131, 120, 0.15);
|
||
border-radius: 3px;
|
||
padding: 0.2em 0.4em;
|
||
border-radius: 3px;
|
||
font-size: 85%;
|
||
tab-size: 2;
|
||
}
|
||
|
||
code {
|
||
color: #eb5757;
|
||
}
|
||
|
||
.code {
|
||
padding: 1.5em 1em;
|
||
}
|
||
|
||
.code-wrap {
|
||
white-space: pre-wrap;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.code > code {
|
||
background: none;
|
||
padding: 0;
|
||
font-size: 100%;
|
||
color: inherit;
|
||
}
|
||
|
||
blockquote {
|
||
font-size: 1.25em;
|
||
margin: 1em 0;
|
||
padding-left: 1em;
|
||
border-left: 3px solid rgb(55, 53, 47);
|
||
}
|
||
|
||
.bookmark {
|
||
text-decoration: none;
|
||
max-height: 8em;
|
||
padding: 0;
|
||
display: flex;
|
||
width: 100%;
|
||
align-items: stretch;
|
||
}
|
||
|
||
.bookmark-title {
|
||
font-size: 0.85em;
|
||
overflow: hidden;
|
||
text-overflow: ellipsis;
|
||
height: 1.75em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.bookmark-text {
|
||
display: flex;
|
||
flex-direction: column;
|
||
}
|
||
|
||
.bookmark-info {
|
||
flex: 4 1 180px;
|
||
padding: 12px 14px 14px;
|
||
display: flex;
|
||
flex-direction: column;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.bookmark-image {
|
||
width: 33%;
|
||
flex: 1 1 180px;
|
||
display: block;
|
||
position: relative;
|
||
object-fit: cover;
|
||
border-radius: 1px;
|
||
}
|
||
|
||
.bookmark-description {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
font-size: 0.75em;
|
||
overflow: hidden;
|
||
max-height: 4.5em;
|
||
word-break: break-word;
|
||
}
|
||
|
||
.bookmark-href {
|
||
font-size: 0.75em;
|
||
margin-top: 0.25em;
|
||
}
|
||
|
||
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
|
||
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
|
||
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
|
||
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
|
||
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
|
||
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
|
||
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
|
||
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
|
||
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
|
||
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
|
||
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
|
||
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
|
||
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.highlight-default {
|
||
color: rgba(55, 53, 47, 1);
|
||
}
|
||
.highlight-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.highlight-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.highlight-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.highlight-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.highlight-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.highlight-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.highlight-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.highlight-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.highlight-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.highlight-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.highlight-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.highlight-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.highlight-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.highlight-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.highlight-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.highlight-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.highlight-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.highlight-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.block-color-default {
|
||
color: inherit;
|
||
fill: inherit;
|
||
}
|
||
.block-color-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.block-color-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.block-color-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.block-color-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.block-color-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.block-color-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.block-color-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.block-color-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.block-color-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.block-color-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.block-color-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.block-color-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.block-color-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.block-color-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.block-color-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.block-color-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.block-color-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.block-color-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
|
||
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
|
||
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
|
||
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
|
||
.select-value-color-opaquegray { background-color: rgba(255, 255, 255, 0.0375); }
|
||
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
|
||
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
|
||
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
|
||
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
|
||
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
|
||
|
||
.checkbox {
|
||
display: inline-flex;
|
||
vertical-align: text-bottom;
|
||
width: 16;
|
||
height: 16;
|
||
background-size: 16px;
|
||
margin-left: 2px;
|
||
margin-right: 5px;
|
||
}
|
||
|
||
.checkbox-on {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
.checkbox-off {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
</style></head><body><article id="58b3c42f-4848-48a1-a4a8-013ea469293b" class="page sans"><header><h1 class="page-title">Unit 3: Vectors</h1></header><div class="page-body"><h1 id="3a5a8a8c-7524-4023-9cc4-47a7d92e4998" class="">Scalars and Vectors</h1><p id="67293ad4-8cc6-40da-a5fb-d7ae18b244cf" class="">Scalars, such as temperature, have magnitude only. They are specified by a number with a unit (10°C) and obey the rules of arithmetic and ordinary algebra. Vectors, such as displacement, have both magnitude and direction (5 m, north) and obey the rules of vector algebra.</p><h1 id="159260fc-88a4-4cbd-bd58-cca28ecc5e42" class="">Adding Vectors Geometrically</h1><p id="c84888a0-0cef-44df-b2ab-3d55e35a3432" class="">Two vectors <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> may be added geometrically by drawing them to a common scale and placing them head to tail. The vector connecting the tail of the first to the head of the second is the vector sum <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>s</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">s</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>. To subtract <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> from <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>, reverse the direction of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> to get <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">-\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0607699999999998em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>; then add <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">-\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0607699999999998em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> to <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>. Vector addition is commutative</p><figure id="ba8173c9-d5d7-4670-8663-1063d23ed61a" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>+</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>+</mo><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a + \vec b = \vec b + \vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.0607699999999998em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="dda0355f-9e00-49eb-8017-7856f0487695" class="">and obeys the associative law.</p><figure id="55bb53ea-ab2b-44c8-9d29-6112e9793665" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mo stretchy="false">(</mo><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>+</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo stretchy="false">)</mo><mo>+</mo><mover accent="true"><mi>c</mi><mo>⃗</mo></mover><mo>=</mo><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>+</mo><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>+</mo><mover accent="true"><mi>c</mi><mo>⃗</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\vec a + \vec b) + \vec c = \vec a + (\vec b + \vec c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2274399999999999em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">c</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2274399999999999em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">c</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></div></figure><h1 id="9b20d5b4-c346-4976-9e37-24072d84e584" class="">Components of a Vector</h1><p id="be83275d-a267-48b5-98b6-d3ac3c86b400" class="">The (scalar) components <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">a_x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">a_y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of any two-dimensional vector along the coordinate axes are found by dropping perpendicular lines from the ends of onto the coordinate axes. The components are given by</p><figure id="a553c89c-9755-4179-b94e-20a5cbb05235" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>a</mi><mi>x</mi></msub><mo>=</mo><mi>a</mi><mi>cos</mi><mo></mo><mi>θ</mi><mspace width="1em"/><mtext>and</mtext><mspace width="1em"/><msub><mi>a</mi><mi>y</mi></msub><mo>=</mo><mi>a</mi><mi>sin</mi><mo></mo><mi>θ</mi></mrow><annotation encoding="application/x-tex">a_x = a \cos \theta \hskip{1em} \textrm{and} \hskip{1em} a_y = a \sin \theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.980548em;vertical-align:-0.286108em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord textrm">and</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span></span></div></figure><p id="60a51be1-b8db-4b17-aeef-814c3cbbda38" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>θ</mi></mrow><annotation encoding="application/x-tex">\theta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span></span></span></span></span><span></span></span> is the angle between the positive direction of the <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span> axis and the direction of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>. The algebraic sign of a component indicates its direction along the associated axis. Given its components, we can find the magnitude and orientation (direction) of the vector by using</p><figure id="779a0cf2-f346-4a71-b396-4f96ce8280f2" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>a</mi><mo>=</mo><msqrt><mrow><msubsup><mi>a</mi><mi>x</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>a</mi><mi>y</mi><mn>2</mn></msubsup></mrow></msqrt><mspace width="1em"/><mtext>and</mtext><mspace width="1em"/><mi>tan</mi><mo></mo><mi>θ</mi><mo>=</mo><mfrac><msub><mi>a</mi><mi>y</mi></msub><msub><mi>a</mi><mi>x</mi></msub></mfrac></mrow><annotation encoding="application/x-tex">a = \sqrt{a_x^2 + a_y^2} \hskip{1em} \textrm{and} \hskip{1em} \tan \theta = \frac{a_y}{a_x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.84em;vertical-align:-0.6276249999999999em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2123750000000002em;"><span class="svg-align" style="top:-3.8em;"><span class="pstrut" style="height:3.8em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7401079999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.383108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.1723749999999997em;"><span class="pstrut" style="height:3.8em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.8800000000000001em;"><svg width='400em' height='1.8800000000000001em' viewBox='0 0 400000 1944' preserveAspectRatio='xMinYMin slice'><path d='M983 90
|
||
l0 -0
|
||
c4,-6.7,10,-10,18,-10 H400000v40
|
||
H1013.1s-83.4,268,-264.1,840c-180.7,572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7
|
||
s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744
|
||
c-10,12,-21,25,-33,39s-32,39,-32,39c-6,-5.3,-15,-14,-27,-26s25,-30,25,-30
|
||
c26.7,-32.7,52,-63,76,-91s52,-60,52,-60s208,722,208,722
|
||
c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,-658.5
|
||
c53.7,-170.3,84.5,-266.8,92.5,-289.5z
|
||
M1001 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.6276249999999999em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:1em;"></span><span class="mord text"><span class="mord textrm">and</span></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">tan</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">θ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.94356em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><h1 id="bd663591-b1fd-4f6e-b205-8bada33c06e6" class="">Unit Vectors</h1><p id="3ab39e11-060f-4c22-a64f-3bfaf6065e5e" class="">A <strong>unit vector</strong> is a vector that has a magnitude of exactly 1 and points in a particular direction. It lacks both dimension and unit. Its sole purpose is to point, that is, to specify a direction. The unit vectors in the positive directions of the x, y, and z axes are labeled <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>i</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.92296em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>j</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1174em;vertical-align:-0.19444em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span></span></span></span><span></span></span>, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9578799999999998em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span>, where the hat <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mrow></mrow><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span> is used instead of an overhead arrow as for other vectors.</p><p id="d576da11-a847-40f0-9276-f89e40b4f80a" class="">Essentially, these can be used to give direction by multiplying with numerical magnitudes.</p><p id="03ecee0f-fe41-409f-95e0-07e02c044bc8" class="">A vector <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> can be written in terms of unit vectors as </p><figure id="aa9668e5-9b43-433f-b84c-944042828ab1" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>=</mo><msub><mi>a</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">\vec a = a_x\hat i + a_y\hat j + a_z\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.07296em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1078799999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="17e7be9c-f55d-428c-8afc-02febcf85d1d" class="">in which <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">a_x\hat i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.07296em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">a_y\hat j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span></span></span></span><span></span></span>, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover></mrow><annotation encoding="application/x-tex">a_z\hat k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1078799999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span></span></span></span></span><span></span></span> are the <strong>vector components</strong> of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">a_x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">a_y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span>, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">a_z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> are its <strong>scalar components.</strong></p><h1 id="29fcd8aa-dc0b-4bf9-9d59-89dbffcf4ffa" class="">Adding Vectors by Components</h1><p id="7705f9a2-1384-463e-bca6-baf14ca025ed" class="">We can add vectors geometrically on a sketch or directly on a vector-capable calculator. A third way is to combine their components axis by axis.</p><p id="feb99697-fbc3-4dd5-8aa6-2aa2e1666ebe" class="">To add vectors in component form, we use the rules</p><div id="d92c8a21-9818-4356-add3-448e494e18ea" class="column-list"><div id="2379fb95-9673-4344-a4e5-1ad9f3b7c787" style="width:33.333333333333336%" class="column"><figure id="87f578ce-a81d-46cb-b6d2-db75f5f60c45" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>r</mi><mi>x</mi></msub><mo>=</mo><msub><mi>a</mi><mi>x</mi></msub><mo>+</mo><msub><mi>b</mi><mi>x</mi></msub></mrow><annotation encoding="application/x-tex">r_x = a_x + b_x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure></div><div id="c0a3040f-83cc-47b2-a3b6-595d5b81140a" style="width:33.333333333333336%" class="column"><figure id="5eae5637-41ae-49d5-ad47-f534dac49513" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>r</mi><mi>y</mi></msub><mo>=</mo><msub><mi>a</mi><mi>y</mi></msub><mo>+</mo><msub><mi>b</mi><mi>y</mi></msub></mrow><annotation encoding="application/x-tex">r_y = a_y + b_y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8694379999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.980548em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure></div><div id="9fc0f66f-216a-4ed5-beac-265b058873c2" style="width:33.33333333333333%" class="column"><figure id="1d3bd971-19c5-4611-90e1-5b29a0a8b5a5" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>r</mi><mi>z</mi></msub><mo>=</mo><msub><mi>a</mi><mi>z</mi></msub><mo>+</mo><msub><mi>b</mi><mi>z</mi></msub></mrow><annotation encoding="application/x-tex">r_z = a_z + b_z</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure></div></div><p id="2ed48a3d-f255-4fa2-bde7-ab615a085422" class="">Here <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> are the vectors being added, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>r</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the vector sum. After summing each of the separate components of the vector, it can be represented in unit-vector notation or magnitude-angle notation.</p><h1 id="261796bc-0fe9-4bb7-a9e3-c59265769a0e" class="">Product of a Scalar and a Vector</h1><p id="83594d8e-ad65-45df-8508-95f50a29effb" class="">The product of a scalar <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span></span></span></span></span><span></span></span></em><em> </em>and a vector <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span></em><em> </em>is a new vector whose magnitude is <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">sv</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span></span></span></span><span></span></span></em><em> </em>and whose direction is the same as that of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>if <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span></span></span></span></span><span></span></span></em><em> </em>is positive, and opposite that of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>if <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span></span></span></span></span><span></span></span></em><em> </em>is negative.
|
||
To divide <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>by <em><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi></mrow><annotation encoding="application/x-tex">s</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span></span></span></span></span><span></span></span></em>, multiply <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>by <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mi>s</mi></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{s}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">s</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span><span></span></span>.</p><h1 id="562e08f2-54d6-4161-ad12-787dfdc47d1e" class="">The Scalar Product</h1><p id="1a92bd22-e173-4dae-b20a-4712915eaaf7" class="">The scalar (or dot) product of two vectors <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is written <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a \cdot \vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>and is the <em>scalar </em>quantity given by <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mi>a</mi><mi>b</mi><mtext> </mtext><mi>c</mi><mi>o</mi><mi>s</mi><mtext> </mtext><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\vec a \cdot \vec b = ab \space cos \space \phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">ab</span><span class="mspace"> </span><span class="mord mathnormal">cos</span><span class="mspace"> </span><span class="mord mathnormal">ϕ</span></span></span></span></span><span></span></span>, in which <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">ϕ</span></span></span></span></span><span></span></span> is the angle between the directions of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span><em> </em>and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>.
|
||
A scalar product is the product of the magnitude of one vector and the scalar component of the second vector along the direction of the first vector. In unit-vector notation,</p><figure id="abfcfe22-b469-4a27-b666-de8d47dabdf8" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover><mo stretchy="false">)</mo><mo>⋅</mo><mo stretchy="false">(</mo><msub><mi>b</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><msub><mi>b</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><msub><mi>b</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\vec a \cdot \vec b = (a_x\hat i + a_y\hat j + a_z\hat k) \cdot (b_x\hat i + b_y\hat j + b_z\hat k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2078799999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2078799999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></div></figure><p id="92f474fe-9e81-421d-9278-31b20dea3b0e" class="">which may be expanded according to the distributive law. Note that <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>⋅</mo><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a \cdot \vec b = \vec b \cdot \vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>.</p><h1 id="98c80e16-baa2-4d8c-a1c5-274961d20c4c" class="">The Vector Product</h1><p id="13b85f6a-7146-49ba-bb21-21b4d93c12c6" class="">The vector (or cross) product of two vectors <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is written <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>×</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a \times \vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and is a vector <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>c</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">c</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> whose magnitude <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">c</span></span></span></span></span><span></span></span> is given by:</p><figure id="584b5f0e-11fc-499b-bd5a-2704a3815708" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>c</mi><mo>=</mo><mi>a</mi><mi>b</mi><mi>sin</mi><mo></mo><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">c = ab \sin \phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">c</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">ab</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">sin</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">ϕ</span></span></span></span></span></div></figure><p id="014472bc-87d0-46ac-9403-7ffc75f495f4" class="">in which <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">ϕ</span></span></span></span></span><span></span></span> is the smaller of the angles between the directions of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>. The direction of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>c</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">c</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is perpendicular to the plane defined by <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>b</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> and is given by a right-hand rule. Note that <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>×</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mo>−</mo><mo stretchy="false">(</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>×</mo><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\vec a \times \vec b = -(\vec b \times \vec a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.2274399999999999em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mopen">(</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span><span></span></span>. In unit-vector notation,</p><figure id="6da2dcc6-1fb4-473f-a61c-49a1c5d7c503" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mo>×</mo><mover accent="true"><mi>b</mi><mo>⃗</mo></mover><mo>=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><msub><mi>a</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover><mo stretchy="false">)</mo><mo>×</mo><mo stretchy="false">(</mo><msub><mi>b</mi><mi>x</mi></msub><mover accent="true"><mi>i</mi><mo>^</mo></mover><mo>+</mo><msub><mi>b</mi><mi>y</mi></msub><mover accent="true"><mi>j</mi><mo>^</mo></mover><mo>+</mo><msub><mi>b</mi><mi>z</mi></msub><mover accent="true"><mi>k</mi><mo>^</mo></mover><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\vec a \times \vec b = (a_x\hat i + a_y\hat j + a_z\hat k) \times (b_x\hat i + b_y\hat j + b_z\hat k)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.79733em;vertical-align:-0.08333em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">b</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2078799999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.17296em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">x</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">i</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.209068em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.92296em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05724em;">j</span></span><span style="top:-3.22852em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.2078799999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathnormal">b</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.04398em;">z</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9578799999999998em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.25em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></div></figure><p id="94751c05-176f-42ff-b10d-a37fe13d444f" class="">which we may expand with the distributive law.</p><figure id="4a414a6b-0055-4706-8041-9e7f8d685efb" class="image"><a href="Unit%203%20Vectors%2058b3c42f484848a1a4a8013ea469293b/Untitled.png"><img style="width:884px" src="Unit%203%20Vectors%2058b3c42f484848a1a4a8013ea469293b/Untitled.png"/></a><figcaption>The right hand rule for cross products.</figcaption></figure><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="64f732e5-07d0-42ae-9740-84c781076345"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%">In nested products, where one product is buried inside another, follow the normal algebraic procedure by starting with the innermost product and working outward.</div></figure><p id="c551fc4c-7946-4a6c-9a39-4681ea4d2f51" class="">
|
||
</p></div></article></body></html> |