731 lines
74 KiB
HTML
731 lines
74 KiB
HTML
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>Unit 23: Gauss’ Law</title><style>
|
||
/* cspell:disable-file */
|
||
/* webkit printing magic: print all background colors */
|
||
html {
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
* {
|
||
box-sizing: border-box;
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
|
||
html,
|
||
body {
|
||
margin: 0;
|
||
padding: 0;
|
||
}
|
||
@media only screen {
|
||
body {
|
||
margin: 2em auto;
|
||
max-width: 900px;
|
||
color: rgb(55, 53, 47);
|
||
}
|
||
}
|
||
|
||
body {
|
||
line-height: 1.5;
|
||
white-space: pre-wrap;
|
||
}
|
||
|
||
a,
|
||
a.visited {
|
||
color: inherit;
|
||
text-decoration: underline;
|
||
}
|
||
|
||
.pdf-relative-link-path {
|
||
font-size: 80%;
|
||
color: #444;
|
||
}
|
||
|
||
h1,
|
||
h2,
|
||
h3 {
|
||
letter-spacing: -0.01em;
|
||
line-height: 1.2;
|
||
font-weight: 600;
|
||
margin-bottom: 0;
|
||
}
|
||
|
||
.page-title {
|
||
font-size: 2.5rem;
|
||
font-weight: 700;
|
||
margin-top: 0;
|
||
margin-bottom: 0.75em;
|
||
}
|
||
|
||
h1 {
|
||
font-size: 1.875rem;
|
||
margin-top: 1.875rem;
|
||
}
|
||
|
||
h2 {
|
||
font-size: 1.5rem;
|
||
margin-top: 1.5rem;
|
||
}
|
||
|
||
h3 {
|
||
font-size: 1.25rem;
|
||
margin-top: 1.25rem;
|
||
}
|
||
|
||
.source {
|
||
border: 1px solid #ddd;
|
||
border-radius: 3px;
|
||
padding: 1.5em;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.callout {
|
||
border-radius: 3px;
|
||
padding: 1rem;
|
||
}
|
||
|
||
figure {
|
||
margin: 1.25em 0;
|
||
page-break-inside: avoid;
|
||
}
|
||
|
||
figcaption {
|
||
opacity: 0.5;
|
||
font-size: 85%;
|
||
margin-top: 0.5em;
|
||
}
|
||
|
||
mark {
|
||
background-color: transparent;
|
||
}
|
||
|
||
.indented {
|
||
padding-left: 1.5em;
|
||
}
|
||
|
||
hr {
|
||
background: transparent;
|
||
display: block;
|
||
width: 100%;
|
||
height: 1px;
|
||
visibility: visible;
|
||
border: none;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
|
||
}
|
||
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
|
||
@media only print {
|
||
img {
|
||
max-height: 100vh;
|
||
object-fit: contain;
|
||
}
|
||
}
|
||
|
||
@page {
|
||
margin: 1in;
|
||
}
|
||
|
||
.collection-content {
|
||
font-size: 0.875rem;
|
||
}
|
||
|
||
.column-list {
|
||
display: flex;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.column {
|
||
padding: 0 1em;
|
||
}
|
||
|
||
.column:first-child {
|
||
padding-left: 0;
|
||
}
|
||
|
||
.column:last-child {
|
||
padding-right: 0;
|
||
}
|
||
|
||
.table_of_contents-item {
|
||
display: block;
|
||
font-size: 0.875rem;
|
||
line-height: 1.3;
|
||
padding: 0.125rem;
|
||
}
|
||
|
||
.table_of_contents-indent-1 {
|
||
margin-left: 1.5rem;
|
||
}
|
||
|
||
.table_of_contents-indent-2 {
|
||
margin-left: 3rem;
|
||
}
|
||
|
||
.table_of_contents-indent-3 {
|
||
margin-left: 4.5rem;
|
||
}
|
||
|
||
.table_of_contents-link {
|
||
text-decoration: none;
|
||
opacity: 0.7;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
|
||
}
|
||
|
||
table,
|
||
th,
|
||
td {
|
||
border: 1px solid rgba(55, 53, 47, 0.09);
|
||
border-collapse: collapse;
|
||
}
|
||
|
||
table {
|
||
border-left: none;
|
||
border-right: none;
|
||
}
|
||
|
||
th,
|
||
td {
|
||
font-weight: normal;
|
||
padding: 0.25em 0.5em;
|
||
line-height: 1.5;
|
||
min-height: 1.5em;
|
||
text-align: left;
|
||
}
|
||
|
||
th {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
}
|
||
|
||
ol,
|
||
ul {
|
||
margin: 0;
|
||
margin-block-start: 0.6em;
|
||
margin-block-end: 0.6em;
|
||
}
|
||
|
||
li > ol:first-child,
|
||
li > ul:first-child {
|
||
margin-block-start: 0.6em;
|
||
}
|
||
|
||
ul > li {
|
||
list-style: disc;
|
||
}
|
||
|
||
ul.to-do-list {
|
||
text-indent: -1.7em;
|
||
}
|
||
|
||
ul.to-do-list > li {
|
||
list-style: none;
|
||
}
|
||
|
||
.to-do-children-checked {
|
||
text-decoration: line-through;
|
||
opacity: 0.375;
|
||
}
|
||
|
||
ul.toggle > li {
|
||
list-style: none;
|
||
}
|
||
|
||
ul {
|
||
padding-inline-start: 1.7em;
|
||
}
|
||
|
||
ul > li {
|
||
padding-left: 0.1em;
|
||
}
|
||
|
||
ol {
|
||
padding-inline-start: 1.6em;
|
||
}
|
||
|
||
ol > li {
|
||
padding-left: 0.2em;
|
||
}
|
||
|
||
.mono ol {
|
||
padding-inline-start: 2em;
|
||
}
|
||
|
||
.mono ol > li {
|
||
text-indent: -0.4em;
|
||
}
|
||
|
||
.toggle {
|
||
padding-inline-start: 0em;
|
||
list-style-type: none;
|
||
}
|
||
|
||
/* Indent toggle children */
|
||
.toggle > li > details {
|
||
padding-left: 1.7em;
|
||
}
|
||
|
||
.toggle > li > details > summary {
|
||
margin-left: -1.1em;
|
||
}
|
||
|
||
.selected-value {
|
||
display: inline-block;
|
||
padding: 0 0.5em;
|
||
background: rgba(206, 205, 202, 0.5);
|
||
border-radius: 3px;
|
||
margin-right: 0.5em;
|
||
margin-top: 0.3em;
|
||
margin-bottom: 0.3em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.collection-title {
|
||
display: inline-block;
|
||
margin-right: 1em;
|
||
}
|
||
|
||
.simple-table {
|
||
margin-top: 1em;
|
||
font-size: 0.875rem;
|
||
empty-cells: show;
|
||
}
|
||
.simple-table td {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table th {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table-header-color {
|
||
background: rgb(247, 246, 243);
|
||
color: black;
|
||
}
|
||
.simple-table-header {
|
||
font-weight: 500;
|
||
}
|
||
|
||
time {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
.icon {
|
||
display: inline-block;
|
||
max-width: 1.2em;
|
||
max-height: 1.2em;
|
||
text-decoration: none;
|
||
vertical-align: text-bottom;
|
||
margin-right: 0.5em;
|
||
}
|
||
|
||
img.icon {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.user-icon {
|
||
width: 1.5em;
|
||
height: 1.5em;
|
||
border-radius: 100%;
|
||
margin-right: 0.5rem;
|
||
}
|
||
|
||
.user-icon-inner {
|
||
font-size: 0.8em;
|
||
}
|
||
|
||
.text-icon {
|
||
border: 1px solid #000;
|
||
text-align: center;
|
||
}
|
||
|
||
.page-cover-image {
|
||
display: block;
|
||
object-fit: cover;
|
||
width: 100%;
|
||
max-height: 30vh;
|
||
}
|
||
|
||
.page-header-icon {
|
||
font-size: 3rem;
|
||
margin-bottom: 1rem;
|
||
}
|
||
|
||
.page-header-icon-with-cover {
|
||
margin-top: -0.72em;
|
||
margin-left: 0.07em;
|
||
}
|
||
|
||
.page-header-icon img {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.link-to-page {
|
||
margin: 1em 0;
|
||
padding: 0;
|
||
border: none;
|
||
font-weight: 500;
|
||
}
|
||
|
||
p > .user {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
td > .user,
|
||
td > time {
|
||
white-space: nowrap;
|
||
}
|
||
|
||
input[type="checkbox"] {
|
||
transform: scale(1.5);
|
||
margin-right: 0.6em;
|
||
vertical-align: middle;
|
||
}
|
||
|
||
p {
|
||
margin-top: 0.5em;
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
.image {
|
||
border: none;
|
||
margin: 1.5em 0;
|
||
padding: 0;
|
||
border-radius: 0;
|
||
text-align: center;
|
||
}
|
||
|
||
.code,
|
||
code {
|
||
background: rgba(135, 131, 120, 0.15);
|
||
border-radius: 3px;
|
||
padding: 0.2em 0.4em;
|
||
border-radius: 3px;
|
||
font-size: 85%;
|
||
tab-size: 2;
|
||
}
|
||
|
||
code {
|
||
color: #eb5757;
|
||
}
|
||
|
||
.code {
|
||
padding: 1.5em 1em;
|
||
}
|
||
|
||
.code-wrap {
|
||
white-space: pre-wrap;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.code > code {
|
||
background: none;
|
||
padding: 0;
|
||
font-size: 100%;
|
||
color: inherit;
|
||
}
|
||
|
||
blockquote {
|
||
font-size: 1.25em;
|
||
margin: 1em 0;
|
||
padding-left: 1em;
|
||
border-left: 3px solid rgb(55, 53, 47);
|
||
}
|
||
|
||
.bookmark {
|
||
text-decoration: none;
|
||
max-height: 8em;
|
||
padding: 0;
|
||
display: flex;
|
||
width: 100%;
|
||
align-items: stretch;
|
||
}
|
||
|
||
.bookmark-title {
|
||
font-size: 0.85em;
|
||
overflow: hidden;
|
||
text-overflow: ellipsis;
|
||
height: 1.75em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.bookmark-text {
|
||
display: flex;
|
||
flex-direction: column;
|
||
}
|
||
|
||
.bookmark-info {
|
||
flex: 4 1 180px;
|
||
padding: 12px 14px 14px;
|
||
display: flex;
|
||
flex-direction: column;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.bookmark-image {
|
||
width: 33%;
|
||
flex: 1 1 180px;
|
||
display: block;
|
||
position: relative;
|
||
object-fit: cover;
|
||
border-radius: 1px;
|
||
}
|
||
|
||
.bookmark-description {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
font-size: 0.75em;
|
||
overflow: hidden;
|
||
max-height: 4.5em;
|
||
word-break: break-word;
|
||
}
|
||
|
||
.bookmark-href {
|
||
font-size: 0.75em;
|
||
margin-top: 0.25em;
|
||
}
|
||
|
||
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
|
||
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
|
||
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
|
||
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
|
||
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
|
||
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
|
||
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
|
||
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
|
||
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
|
||
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
|
||
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
|
||
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
|
||
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.highlight-default {
|
||
color: rgba(55, 53, 47, 1);
|
||
}
|
||
.highlight-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.highlight-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.highlight-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.highlight-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.highlight-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.highlight-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.highlight-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.highlight-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.highlight-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.highlight-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.highlight-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.highlight-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.highlight-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.highlight-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.highlight-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.highlight-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.highlight-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.highlight-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.block-color-default {
|
||
color: inherit;
|
||
fill: inherit;
|
||
}
|
||
.block-color-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.block-color-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.block-color-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.block-color-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.block-color-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.block-color-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.block-color-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.block-color-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.block-color-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.block-color-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.block-color-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.block-color-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.block-color-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.block-color-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.block-color-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.block-color-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.block-color-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.block-color-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
|
||
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
|
||
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
|
||
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
|
||
.select-value-color-opaquegray { background-color: rgba(255, 255, 255, 0.0375); }
|
||
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
|
||
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
|
||
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
|
||
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
|
||
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
|
||
|
||
.checkbox {
|
||
display: inline-flex;
|
||
vertical-align: text-bottom;
|
||
width: 16;
|
||
height: 16;
|
||
background-size: 16px;
|
||
margin-left: 2px;
|
||
margin-right: 5px;
|
||
}
|
||
|
||
.checkbox-on {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
.checkbox-off {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
</style></head><body><article id="96903ae9-d02e-47e0-8c96-ead10f03b885" class="page sans"><header><h1 class="page-title">Unit 23: Gauss’ Law</h1></header><div class="page-body"><h1 id="49bc613e-d551-476a-85db-f981df743216" class="">23.1 - Electric Flux</h1><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="a7715759-7195-4172-b200-b5fefb34bc8c"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%"><strong>Key Idea</strong>
|
||
The electric flux <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span></span></span></span></span><span></span></span> through a surface is the <em>amount of electric field</em> that pierces the surface.</div></figure><p id="a40c2c41-f8ea-41b1-8979-b5761e47977a" class="">The area vector <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mrow><mi>d</mi><mi>A</mi></mrow><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec {dA}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9774399999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9774399999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">A</span></span></span><span style="top:-3.26344em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> for an area element (patch element) on a surface is a vector that is perpendicular to the element and has a magnitude equal to the area <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>A</mi></mrow><annotation encoding="application/x-tex">dA</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">A</span></span></span></span></span><span></span></span> of the element.</p><p id="5a00a080-2ffb-4157-a589-e4b71c383ab0" class="">The electric flux <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi mathvariant="normal">Φ</mi></mrow><annotation encoding="application/x-tex">d\Phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord">Φ</span></span></span></span></span><span></span></span> through a patch element with area vector <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mover accent="true"><mi>A</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">d \vec A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.09660999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span> is given by a dot product:</p><figure id="72fa522f-22de-4b49-af00-3a8937ebd824" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>d</mi><mi mathvariant="normal">Φ</mi><mo>=</mo><mover accent="true"><mi>E</mi><mo>⃗</mo></mover><mo>⋅</mo><mi>d</mi><mover accent="true"><mi>A</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">d\Phi = \vec E \cdot d\vec A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.09660999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><h2 id="5f0ef715-960f-48a7-b83b-6e63b1c6f97c" class="">Total Flux</h2><p id="b5b80dae-7db1-418c-8e3b-5c4f59587bf1" class="">The total flux through a surface is given by:</p><figure id="ec306ef8-ab64-4d03-904f-39f3e68dac87" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>=</mo><mo>∫</mo><mover accent="true"><mi>E</mi><mo>⃗</mo></mover><mo>⋅</mo><mi>d</mi><mover accent="true"><mi>A</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\Phi = \int \vec E \cdot d\vec A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.09660999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="17de8822-2bd8-4736-9368-af39e26a4a4f" class="">where the integration is carried out over the surface.</p><p id="f4dc68bf-896e-4e3a-a5b8-709c934256d3" class="">For a uniform flat surface, this can be written as:</p><figure id="3a08a62e-1a2d-4581-905d-af600efe5f1b" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>=</mo><mo stretchy="false">(</mo><mi>E</mi><mi>cos</mi><mo></mo><mi>ϕ</mi><mo stretchy="false">)</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">\Phi = (E \cos \phi) A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">cos</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal">ϕ</span><span class="mclose">)</span><span class="mord mathnormal">A</span></span></span></span></span></div></figure><h2 id="402f0bac-3d93-45e4-a140-ed78946d8bca" class="">Net Flux</h2><p id="2bcd0484-977e-4547-839e-78f904266833" class="">The net flux through a closed surface (which is used in Gauss’ law) is given by:</p><figure id="64855f33-be71-45d3-aa58-34833c75f7ca" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Φ</mi><mo>=</mo><mo>∮</mo><mover accent="true"><mi>E</mi><mo>⃗</mo></mover><mo>⋅</mo><mi>d</mi><mover accent="true"><mi>A</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\Phi = \oint \vec E \cdot d\vec A</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.09660999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><h1 id="c19bb7af-27ed-45ab-b48e-071eae26b42c" class="">23.2 - Gauss’ Law</h1><p id="70e9c3d7-6dca-4e1b-a2da-0737ee737f44" class="">Gauss’ law relates the net flux <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Φ</mi></mrow><annotation encoding="application/x-tex">\Phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Φ</span></span></span></span></span><span></span></span> penetrating a closed surface to the net charge <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>q</mi><mrow><mi>e</mi><mi>n</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">q_{enc}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> enclosed by the surface:</p><figure id="2a53bcec-a1c7-4fe1-b0f1-2f5e4bcd7735" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>ϵ</mi><mn>0</mn></msub><mi mathvariant="normal">Φ</mi><mo>=</mo><msub><mi>q</mi><mrow><mi>e</mi><mi>n</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\epsilon_0 \Phi = q_{enc}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">Φ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="5a7ed14c-f2fb-40f2-a460-1dc7cc74a102" class="">Gauss’ law can also be written in terms of the electric field piercing the enclosing Gaussian surface:</p><figure id="547ad233-b1f3-411c-8c71-ab5d0fdd5d89" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>ϵ</mi><mn>0</mn></msub><mo>∮</mo><mover accent="true"><mi>E</mi><mo>⃗</mo></mover><mo>⋅</mo><mi>d</mi><mover accent="true"><mi>A</mi><mo>⃗</mo></mover><mo>=</mo><msub><mi>q</mi><mrow><mi>e</mi><mi>n</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\epsilon_0 \oint \vec E \cdot d\vec A = q_{enc}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∮</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">A</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.09660999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
||
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
||
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
||
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
||
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
||
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
||
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">c</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><h1 id="ae51a77a-6335-401b-9e28-cf1e1d8decc1" class="">23.3 - A Charged Isolated Conductor</h1><figure class="block-color-gray_background callout" style="white-space:pre-wrap;display:flex" id="395efe6e-3222-4129-8f63-795f4717941b"><div style="font-size:1.5em"><span class="icon">💡</span></div><div style="width:100%"><strong>Key Idea
|
||
</strong>An excess charge on an isolated conductor is located entirely on the outer surface of the conductor.</div></figure><p id="013b3c92-0f6c-42ff-9e67-78f221080bb3" class="">The internal electric field of a charged, isolated conductor is zero, and the external field (at nearby points) is perpendicular to the surface and has a magnitude that depends on the surface charge density <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span></span><span></span></span>:</p><figure id="deeb51b8-0fd4-49cd-b29a-b024addc6cdd" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><msub><mi>ϵ</mi><mn>0</mn></msub></mfrac></mrow><annotation encoding="application/x-tex">E = \frac{\sigma}{\epsilon_0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.9435600000000002em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><figure id="59b41e83-8daa-4ad3-822f-7f0b505bed09" class="image"><a href="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled.png"><img style="width:384px" src="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled.png"/></a></figure><h1 id="0188700e-3505-40b1-954f-64a8ae859161" class="">23.4 - Applying Gauss’ Law: Cylindrical Symmetry</h1><div id="84770629-6696-44fa-b68e-a9776d4b21b6" class="column-list"><div id="45a5191a-756a-4186-969f-14c4ec481189" style="width:68.75%" class="column"><p id="01eae1c8-0ddc-41af-8a87-ae1d34face7c" class="">The electric field at a point near an infinite line of charge (or charged rod) with uniform linear charge density <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">λ</span></span></span></span></span><span></span></span> is perpendicular to the line and has magnitude:</p><figure id="b0f74002-cefa-4d46-a9a5-fcb1c18fae19" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mi>λ</mi><mrow><mn>2</mn><mi>π</mi><msub><mi>ϵ</mi><mn>0</mn></msub><mi>r</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">E = \frac{\lambda}{2\pi \epsilon_0 r}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.20744em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.37144em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">λ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="8e511c49-c517-4fa7-8840-508c41d79fcc" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span><span></span></span> is the perpendicular distance from the line to the point.</p></div><div id="f8ca9c5d-f7ae-43a0-88e1-0333cfbe8534" style="width:31.249999999999993%" class="column"><figure id="4d815c5f-93db-43cb-961a-d8cd822d179c" class="image"><a href="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%201.png"><img style="width:915px" src="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%201.png"/></a></figure></div></div><h1 id="6de1f946-5a04-4124-9c45-9f31f9bcd1a1" class="">23.5 - Applying Gauss’ Law: Planar Symmetry</h1><h2 id="3b4bf6af-36a5-4443-aad0-72138ed4053e" class="">Nonconducting Sheet</h2><div id="911fa66b-b8e4-4cfe-900e-1e38b76521a9" class="column-list"><div id="f9499299-0ac4-4ad4-8a46-f81e7aaf27f3" style="width:68.75%" class="column"><p id="2473d511-03e4-4bf0-891b-d613e14db05e" class="">The electric field due to an<strong> infinite nonconducting sheet</strong> with uniform surface charge density <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span></span><span></span></span> is perpendicular to the plane of the sheet and has magnitude:</p><figure id="43f47fbf-4039-46c3-91b8-f32be88ce1bc" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ϵ</mi><mn>0</mn></msub></mrow></mfrac></mrow><annotation encoding="application/x-tex">E = \frac{\sigma}{2\epsilon_0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.9435600000000002em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure></div><div id="087c404a-4d12-4aad-ac2b-682d626498d0" style="width:31.25%" class="column"><figure id="2e8f2a06-1458-4084-b14f-131e252e109c" class="image"><a href="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%202.png"><img style="width:584px" src="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%202.png"/></a></figure></div></div><h2 id="1ff08449-c9fd-4d69-a3dd-1562fa2d5e11" class="">Two Conducting Plates</h2><div id="004488fe-a630-4e64-884e-71e9a8ba639b" class="column-list"><div id="17c1ff17-9231-49c8-95ec-d03aba95d318" style="width:25%" class="column"><figure id="d4042676-4fe4-48d5-8900-848ea41d239e" class="image"><a href="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%203.png"><img style="width:432px" src="Unit%2023%20Gauss%E2%80%99%20Law%2096903ae9d02e47e08c96ead10f03b885/Untitled%203.png"/></a></figure></div><div id="4d402b8e-dbff-4308-b208-6a1a51be67e2" style="width:75%" class="column"><p id="8245b0d2-5916-4856-8c5b-57042d6ab287" class="">The external electric field just outside the surface of an <strong>isolated charged conductor </strong>with surface charge density <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span></span><span></span></span> is perpendicular to the surface and has magnitude:</p><figure id="f4fef1dd-44d9-4f2d-806e-6309179f6b9a" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mi>σ</mi><msub><mi>ϵ</mi><mn>0</mn></msub></mfrac></mrow><annotation encoding="application/x-tex">E = \frac{\sigma}{\epsilon_0}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.9435600000000002em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">σ</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="a13119b6-6a1e-4dd7-8a31-1f545cc6de23" class="">Inside the conductor, the electric field is zero.</p></div></div><h1 id="c7520cd1-341c-4917-a66b-cf05b4ba9b4c" class="">23.6 - Applying Gauss’ Law: Spherical Symmetry</h1><h2 id="46501dab-e3b0-424f-ad29-51489e1bed0f" class="">Spherical Shells</h2><p id="5d27f340-a409-4606-8b1b-b67d9f4806b9" class="">Outside a spherical shell of uniform charge <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span></span></span><span></span></span>, the electric field due to the shell is radial (inward or outward, depending on the sign of the charge) and has magnitude:</p><figure id="5798024b-e3da-4f2e-a4c2-61116b0d81a2" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>π</mi><msub><mi>ϵ</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mi>q</mi><msup><mi>r</mi><mn>2</mn></msup></mfrac></mrow><annotation encoding="application/x-tex">E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.1574400000000002em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.02778em;">r</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="27bb2ecf-e023-446a-9d3b-61b89865c023" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span><span></span></span> is the distance to the point of measurement from the center of the shell. The field is the same as though all of the charge is concentrated as a particle at the center of the shell.</p><p id="679cda4c-3bd8-4fec-a712-d15d6201ebea" class="">At any point inside the shell, the field due to the shell is zero.</p><h2 id="5354b11b-cb41-495f-9cb3-60fdc021ff21" class="">Uniform Spheres</h2><p id="7145ab08-ae66-4535-8aec-9556626b8ef5" class="">Inside a sphere with a uniform volume charge density, the field is radial and has the magnitude:</p><figure id="78021375-f6cd-47e8-a2f2-5afd4ed753dc" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>E</mi><mo>=</mo><mfrac><mn>1</mn><mrow><mn>4</mn><mi>π</mi><msub><mi>ϵ</mi><mn>0</mn></msub></mrow></mfrac><mfrac><mi>q</mi><msup><mi>R</mi><mn>3</mn></msup></mfrac><mi>r</mi></mrow><annotation encoding="application/x-tex">E = \frac{1}{4\pi\epsilon_0} \frac{q}{R^3} r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.1574400000000002em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathnormal" style="margin-right:0.03588em;">π</span><span class="mord"><span class="mord mathnormal">ϵ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.8360000000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.1075599999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal" style="margin-right:0.00773em;">R</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span></div></figure><p id="f3be7bef-c94b-4ae9-918c-5515d85ebc9f" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>q</mi></mrow><annotation encoding="application/x-tex">q</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">q</span></span></span></span></span><span></span></span> is the total charge, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi></mrow><annotation encoding="application/x-tex">R</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.00773em;">R</span></span></span></span></span><span></span></span> is the sphere’s radius, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>r</mi></mrow><annotation encoding="application/x-tex">r</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span></span></span></span><span></span></span> is the radial distance from the center of the sphere to the point of measurement.</p></div></article></body></html> |