669 lines
83 KiB
HTML
669 lines
83 KiB
HTML
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>Unit 8: Potential Energy and Conservation of Energy</title><style>
|
||
/* cspell:disable-file */
|
||
/* webkit printing magic: print all background colors */
|
||
html {
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
* {
|
||
box-sizing: border-box;
|
||
-webkit-print-color-adjust: exact;
|
||
}
|
||
|
||
html,
|
||
body {
|
||
margin: 0;
|
||
padding: 0;
|
||
}
|
||
@media only screen {
|
||
body {
|
||
margin: 2em auto;
|
||
max-width: 900px;
|
||
color: rgb(55, 53, 47);
|
||
}
|
||
}
|
||
|
||
body {
|
||
line-height: 1.5;
|
||
white-space: pre-wrap;
|
||
}
|
||
|
||
a,
|
||
a.visited {
|
||
color: inherit;
|
||
text-decoration: underline;
|
||
}
|
||
|
||
.pdf-relative-link-path {
|
||
font-size: 80%;
|
||
color: #444;
|
||
}
|
||
|
||
h1,
|
||
h2,
|
||
h3 {
|
||
letter-spacing: -0.01em;
|
||
line-height: 1.2;
|
||
font-weight: 600;
|
||
margin-bottom: 0;
|
||
}
|
||
|
||
.page-title {
|
||
font-size: 2.5rem;
|
||
font-weight: 700;
|
||
margin-top: 0;
|
||
margin-bottom: 0.75em;
|
||
}
|
||
|
||
h1 {
|
||
font-size: 1.875rem;
|
||
margin-top: 1.875rem;
|
||
}
|
||
|
||
h2 {
|
||
font-size: 1.5rem;
|
||
margin-top: 1.5rem;
|
||
}
|
||
|
||
h3 {
|
||
font-size: 1.25rem;
|
||
margin-top: 1.25rem;
|
||
}
|
||
|
||
.source {
|
||
border: 1px solid #ddd;
|
||
border-radius: 3px;
|
||
padding: 1.5em;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.callout {
|
||
border-radius: 3px;
|
||
padding: 1rem;
|
||
}
|
||
|
||
figure {
|
||
margin: 1.25em 0;
|
||
page-break-inside: avoid;
|
||
}
|
||
|
||
figcaption {
|
||
opacity: 0.5;
|
||
font-size: 85%;
|
||
margin-top: 0.5em;
|
||
}
|
||
|
||
mark {
|
||
background-color: transparent;
|
||
}
|
||
|
||
.indented {
|
||
padding-left: 1.5em;
|
||
}
|
||
|
||
hr {
|
||
background: transparent;
|
||
display: block;
|
||
width: 100%;
|
||
height: 1px;
|
||
visibility: visible;
|
||
border: none;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
|
||
}
|
||
|
||
img {
|
||
max-width: 100%;
|
||
}
|
||
|
||
@media only print {
|
||
img {
|
||
max-height: 100vh;
|
||
object-fit: contain;
|
||
}
|
||
}
|
||
|
||
@page {
|
||
margin: 1in;
|
||
}
|
||
|
||
.collection-content {
|
||
font-size: 0.875rem;
|
||
}
|
||
|
||
.column-list {
|
||
display: flex;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.column {
|
||
padding: 0 1em;
|
||
}
|
||
|
||
.column:first-child {
|
||
padding-left: 0;
|
||
}
|
||
|
||
.column:last-child {
|
||
padding-right: 0;
|
||
}
|
||
|
||
.table_of_contents-item {
|
||
display: block;
|
||
font-size: 0.875rem;
|
||
line-height: 1.3;
|
||
padding: 0.125rem;
|
||
}
|
||
|
||
.table_of_contents-indent-1 {
|
||
margin-left: 1.5rem;
|
||
}
|
||
|
||
.table_of_contents-indent-2 {
|
||
margin-left: 3rem;
|
||
}
|
||
|
||
.table_of_contents-indent-3 {
|
||
margin-left: 4.5rem;
|
||
}
|
||
|
||
.table_of_contents-link {
|
||
text-decoration: none;
|
||
opacity: 0.7;
|
||
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
|
||
}
|
||
|
||
table,
|
||
th,
|
||
td {
|
||
border: 1px solid rgba(55, 53, 47, 0.09);
|
||
border-collapse: collapse;
|
||
}
|
||
|
||
table {
|
||
border-left: none;
|
||
border-right: none;
|
||
}
|
||
|
||
th,
|
||
td {
|
||
font-weight: normal;
|
||
padding: 0.25em 0.5em;
|
||
line-height: 1.5;
|
||
min-height: 1.5em;
|
||
text-align: left;
|
||
}
|
||
|
||
th {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
}
|
||
|
||
ol,
|
||
ul {
|
||
margin: 0;
|
||
margin-block-start: 0.6em;
|
||
margin-block-end: 0.6em;
|
||
}
|
||
|
||
li > ol:first-child,
|
||
li > ul:first-child {
|
||
margin-block-start: 0.6em;
|
||
}
|
||
|
||
ul > li {
|
||
list-style: disc;
|
||
}
|
||
|
||
ul.to-do-list {
|
||
text-indent: -1.7em;
|
||
}
|
||
|
||
ul.to-do-list > li {
|
||
list-style: none;
|
||
}
|
||
|
||
.to-do-children-checked {
|
||
text-decoration: line-through;
|
||
opacity: 0.375;
|
||
}
|
||
|
||
ul.toggle > li {
|
||
list-style: none;
|
||
}
|
||
|
||
ul {
|
||
padding-inline-start: 1.7em;
|
||
}
|
||
|
||
ul > li {
|
||
padding-left: 0.1em;
|
||
}
|
||
|
||
ol {
|
||
padding-inline-start: 1.6em;
|
||
}
|
||
|
||
ol > li {
|
||
padding-left: 0.2em;
|
||
}
|
||
|
||
.mono ol {
|
||
padding-inline-start: 2em;
|
||
}
|
||
|
||
.mono ol > li {
|
||
text-indent: -0.4em;
|
||
}
|
||
|
||
.toggle {
|
||
padding-inline-start: 0em;
|
||
list-style-type: none;
|
||
}
|
||
|
||
/* Indent toggle children */
|
||
.toggle > li > details {
|
||
padding-left: 1.7em;
|
||
}
|
||
|
||
.toggle > li > details > summary {
|
||
margin-left: -1.1em;
|
||
}
|
||
|
||
.selected-value {
|
||
display: inline-block;
|
||
padding: 0 0.5em;
|
||
background: rgba(206, 205, 202, 0.5);
|
||
border-radius: 3px;
|
||
margin-right: 0.5em;
|
||
margin-top: 0.3em;
|
||
margin-bottom: 0.3em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.collection-title {
|
||
display: inline-block;
|
||
margin-right: 1em;
|
||
}
|
||
|
||
.simple-table {
|
||
margin-top: 1em;
|
||
font-size: 0.875rem;
|
||
empty-cells: show;
|
||
}
|
||
.simple-table td {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table th {
|
||
height: 29px;
|
||
min-width: 120px;
|
||
}
|
||
|
||
.simple-table-header-color {
|
||
background: rgb(247, 246, 243);
|
||
color: black;
|
||
}
|
||
.simple-table-header {
|
||
font-weight: 500;
|
||
}
|
||
|
||
time {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
.icon {
|
||
display: inline-block;
|
||
max-width: 1.2em;
|
||
max-height: 1.2em;
|
||
text-decoration: none;
|
||
vertical-align: text-bottom;
|
||
margin-right: 0.5em;
|
||
}
|
||
|
||
img.icon {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.user-icon {
|
||
width: 1.5em;
|
||
height: 1.5em;
|
||
border-radius: 100%;
|
||
margin-right: 0.5rem;
|
||
}
|
||
|
||
.user-icon-inner {
|
||
font-size: 0.8em;
|
||
}
|
||
|
||
.text-icon {
|
||
border: 1px solid #000;
|
||
text-align: center;
|
||
}
|
||
|
||
.page-cover-image {
|
||
display: block;
|
||
object-fit: cover;
|
||
width: 100%;
|
||
max-height: 30vh;
|
||
}
|
||
|
||
.page-header-icon {
|
||
font-size: 3rem;
|
||
margin-bottom: 1rem;
|
||
}
|
||
|
||
.page-header-icon-with-cover {
|
||
margin-top: -0.72em;
|
||
margin-left: 0.07em;
|
||
}
|
||
|
||
.page-header-icon img {
|
||
border-radius: 3px;
|
||
}
|
||
|
||
.link-to-page {
|
||
margin: 1em 0;
|
||
padding: 0;
|
||
border: none;
|
||
font-weight: 500;
|
||
}
|
||
|
||
p > .user {
|
||
opacity: 0.5;
|
||
}
|
||
|
||
td > .user,
|
||
td > time {
|
||
white-space: nowrap;
|
||
}
|
||
|
||
input[type="checkbox"] {
|
||
transform: scale(1.5);
|
||
margin-right: 0.6em;
|
||
vertical-align: middle;
|
||
}
|
||
|
||
p {
|
||
margin-top: 0.5em;
|
||
margin-bottom: 0.5em;
|
||
}
|
||
|
||
.image {
|
||
border: none;
|
||
margin: 1.5em 0;
|
||
padding: 0;
|
||
border-radius: 0;
|
||
text-align: center;
|
||
}
|
||
|
||
.code,
|
||
code {
|
||
background: rgba(135, 131, 120, 0.15);
|
||
border-radius: 3px;
|
||
padding: 0.2em 0.4em;
|
||
border-radius: 3px;
|
||
font-size: 85%;
|
||
tab-size: 2;
|
||
}
|
||
|
||
code {
|
||
color: #eb5757;
|
||
}
|
||
|
||
.code {
|
||
padding: 1.5em 1em;
|
||
}
|
||
|
||
.code-wrap {
|
||
white-space: pre-wrap;
|
||
word-break: break-all;
|
||
}
|
||
|
||
.code > code {
|
||
background: none;
|
||
padding: 0;
|
||
font-size: 100%;
|
||
color: inherit;
|
||
}
|
||
|
||
blockquote {
|
||
font-size: 1.25em;
|
||
margin: 1em 0;
|
||
padding-left: 1em;
|
||
border-left: 3px solid rgb(55, 53, 47);
|
||
}
|
||
|
||
.bookmark {
|
||
text-decoration: none;
|
||
max-height: 8em;
|
||
padding: 0;
|
||
display: flex;
|
||
width: 100%;
|
||
align-items: stretch;
|
||
}
|
||
|
||
.bookmark-title {
|
||
font-size: 0.85em;
|
||
overflow: hidden;
|
||
text-overflow: ellipsis;
|
||
height: 1.75em;
|
||
white-space: nowrap;
|
||
}
|
||
|
||
.bookmark-text {
|
||
display: flex;
|
||
flex-direction: column;
|
||
}
|
||
|
||
.bookmark-info {
|
||
flex: 4 1 180px;
|
||
padding: 12px 14px 14px;
|
||
display: flex;
|
||
flex-direction: column;
|
||
justify-content: space-between;
|
||
}
|
||
|
||
.bookmark-image {
|
||
width: 33%;
|
||
flex: 1 1 180px;
|
||
display: block;
|
||
position: relative;
|
||
object-fit: cover;
|
||
border-radius: 1px;
|
||
}
|
||
|
||
.bookmark-description {
|
||
color: rgba(55, 53, 47, 0.6);
|
||
font-size: 0.75em;
|
||
overflow: hidden;
|
||
max-height: 4.5em;
|
||
word-break: break-word;
|
||
}
|
||
|
||
.bookmark-href {
|
||
font-size: 0.75em;
|
||
margin-top: 0.25em;
|
||
}
|
||
|
||
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
|
||
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
|
||
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
|
||
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
|
||
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
|
||
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
|
||
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
|
||
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
|
||
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
|
||
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
|
||
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
|
||
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
|
||
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
||
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
||
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
||
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
||
.highlight-default {
|
||
color: rgba(55, 53, 47, 1);
|
||
}
|
||
.highlight-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.highlight-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.highlight-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.highlight-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.highlight-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.highlight-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.highlight-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.highlight-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.highlight-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.highlight-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.highlight-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.highlight-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.highlight-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.highlight-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.highlight-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.highlight-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.highlight-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.highlight-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.block-color-default {
|
||
color: inherit;
|
||
fill: inherit;
|
||
}
|
||
.block-color-gray {
|
||
color: rgba(120, 119, 116, 1);
|
||
fill: rgba(120, 119, 116, 1);
|
||
}
|
||
.block-color-brown {
|
||
color: rgba(159, 107, 83, 1);
|
||
fill: rgba(159, 107, 83, 1);
|
||
}
|
||
.block-color-orange {
|
||
color: rgba(217, 115, 13, 1);
|
||
fill: rgba(217, 115, 13, 1);
|
||
}
|
||
.block-color-yellow {
|
||
color: rgba(203, 145, 47, 1);
|
||
fill: rgba(203, 145, 47, 1);
|
||
}
|
||
.block-color-teal {
|
||
color: rgba(68, 131, 97, 1);
|
||
fill: rgba(68, 131, 97, 1);
|
||
}
|
||
.block-color-blue {
|
||
color: rgba(51, 126, 169, 1);
|
||
fill: rgba(51, 126, 169, 1);
|
||
}
|
||
.block-color-purple {
|
||
color: rgba(144, 101, 176, 1);
|
||
fill: rgba(144, 101, 176, 1);
|
||
}
|
||
.block-color-pink {
|
||
color: rgba(193, 76, 138, 1);
|
||
fill: rgba(193, 76, 138, 1);
|
||
}
|
||
.block-color-red {
|
||
color: rgba(212, 76, 71, 1);
|
||
fill: rgba(212, 76, 71, 1);
|
||
}
|
||
.block-color-gray_background {
|
||
background: rgba(241, 241, 239, 1);
|
||
}
|
||
.block-color-brown_background {
|
||
background: rgba(244, 238, 238, 1);
|
||
}
|
||
.block-color-orange_background {
|
||
background: rgba(251, 236, 221, 1);
|
||
}
|
||
.block-color-yellow_background {
|
||
background: rgba(251, 243, 219, 1);
|
||
}
|
||
.block-color-teal_background {
|
||
background: rgba(237, 243, 236, 1);
|
||
}
|
||
.block-color-blue_background {
|
||
background: rgba(231, 243, 248, 1);
|
||
}
|
||
.block-color-purple_background {
|
||
background: rgba(244, 240, 247, 0.8);
|
||
}
|
||
.block-color-pink_background {
|
||
background: rgba(249, 238, 243, 0.8);
|
||
}
|
||
.block-color-red_background {
|
||
background: rgba(253, 235, 236, 1);
|
||
}
|
||
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
|
||
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
|
||
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
|
||
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
|
||
.select-value-color-opaquegray { background-color: rgba(255, 255, 255, 0.0375); }
|
||
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
|
||
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
|
||
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
|
||
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
|
||
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
|
||
|
||
.checkbox {
|
||
display: inline-flex;
|
||
vertical-align: text-bottom;
|
||
width: 16;
|
||
height: 16;
|
||
background-size: 16px;
|
||
margin-left: 2px;
|
||
margin-right: 5px;
|
||
}
|
||
|
||
.checkbox-on {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
.checkbox-off {
|
||
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
|
||
}
|
||
|
||
</style></head><body><article id="4ccc3fec-209d-494e-97c8-ea4492992055" class="page sans"><header><h1 class="page-title">Unit 8: Potential Energy and Conservation of Energy</h1></header><div class="page-body"><h1 id="2dfd2b3e-f4d9-4e50-8d91-96a9054e1ecc" class="">8.1 - Potential Energy</h1><h2 id="602cbc65-ed4f-418a-a3d0-055e04c05343" class="">Conservative Forces</h2><p id="aeb5e41a-c7cf-4abc-9b1a-a850c44609d1" class="">A force is a conservative force if the net work it does on a particle moving around any closed path, from an initial point and then back to that point, is zero. Equivalently, a force is conservative if the net work it does on a particle moving between two points does not depend on the path taken by the particle. </p><p id="843a8866-3380-4b00-9823-a080972b99b8" class="">The gravitational force and the spring force are examples of conservative forces; while the kinetic frictional force is a non-conservative force.</p><h2 id="b2689954-2bbb-40ba-9683-a1347de655fc" class="">Potential Energy</h2><p id="516b1841-6cb3-4351-8bd6-69efc26eceda" class="">Potential energy is energy that is associated with the configuration of a system in which a conservative force acts.</p><p id="cd193655-a71f-4afe-9054-3481edd717f7" class="">When the conservative force does work <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span><span></span></span> on a particle within the system, the change <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>U</mi></mrow><annotation encoding="application/x-tex">\Delta U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span><span></span></span> in the potential energy of the system is:</p><figure id="b8d7637e-f73b-40c8-9f47-ebe1236ea87d" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>U</mi><mo>=</mo><mo>−</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">\Delta U = -W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span></div></figure><p id="f49218a3-1d8f-4751-b954-39176e4047b3" class="">As a practical example of this, when an object is lifted up with work <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span><span></span></span>, the resulting change in its potential energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>U</mi></mrow><annotation encoding="application/x-tex">\Delta U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span><span></span></span> is equal to the inverse of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span><span></span></span>.</p><p id="19c0e21b-0b1f-4655-9640-1865d80da408" class="">If a particle moves from point <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> to <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">x_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span>, the change in potential energy can be calculated using an integral:</p><figure id="a017e317-10e0-4eb1-afe7-045eb8ca00c3" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>U</mi><mo>=</mo><mo>−</mo><msubsup><mo>∫</mo><msub><mi>x</mi><mi>i</mi></msub><msub><mi>x</mi><mi>f</mi></msub></msubsup><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mtext> </mtext><mi>d</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\Delta U = -\int_{x_i}^{x_f} F(x) \space dx</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.426342em;vertical-align:-1.01205em;"></span><span class="mord">−</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.414292em;"><span style="top:-1.7880500000000004em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3280857142857143em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.8129000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3487714285714287em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29011428571428566em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.01205em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace"> </span><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span></span></span></div></figure><h2 id="a8181482-c04f-44d4-9bb4-c241f51d452b" class="">Gravitational Potential Energy</h2><p id="863546a9-516f-408b-86b6-f30c89a335f5" class="">The potential energy associated with a system consisting of Earth and a nearby particle if gravitational potential energy.</p><p id="81e70219-67f8-4788-97a4-8d8302bca1f3" class="">If the particle moves from height <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">y_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> to height <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>f</mi></msub></mrow><annotation encoding="application/x-tex">y_f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span>, the change in gravitational potential energy is:</p><figure id="d15b9552-80ed-4768-a2d4-d7b4628c4661" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>U</mi><mo>=</mo><mi>m</mi><mi>g</mi><mtext> </mtext><mi mathvariant="normal">Δ</mi><mi>y</mi></mrow><annotation encoding="application/x-tex">\Delta U = mg \space \Delta y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal">m</span><span class="mord mathnormal" style="margin-right:0.03588em;">g</span><span class="mspace"> </span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.03588em;">y</span></span></span></span></span></div></figure><h2 id="9f862236-116d-4f80-8594-2ee1cc0bf5c2" class="">Elastic Potential Energy</h2><p id="dff7ae69-8df0-4ba0-bfb5-8c2179e6dd8c" class="">Elastic potential energy is the energy associated with the state of compresssion or extension of an elastic object (spring). For a spring that exerts a spring force <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mo>=</mo><mo>−</mo><mi>k</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">F = -kx</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span> when its free end has displacement <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span>, the elastic potential energy is:</p><figure id="2cc14c1b-8f39-4cc0-a5a4-b589ae6f4818" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>k</mi><msup><mi>x</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">U(x) = \frac{1}{2} k x^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.00744em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal" style="margin-right:0.03148em;">k</span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="629798a7-6ec2-4075-ace5-f083b5d100fe" class="">In this reference configuration, the spring is at its relaxed length where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">x = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span><span></span></span> and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">U = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span><span></span></span>.</p><h1 id="d16ed732-e49a-4941-9d42-3ce3b0039b0f" class="">8.2 - Conservation of Mechanical Energy</h1><p id="48803ccb-a541-48ea-9a48-85042e384f6f" class="">The mechanical energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">E_{mec}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of a system is the sum of its kinetic energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span></span></span></span></span><span></span></span> and potential energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span><span></span></span>:</p><figure id="b6552041-a0d8-4305-a183-866767cfd51d" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub><mo>=</mo><mi>K</mi><mo>+</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">E_{mec} = K + U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span></div></figure><p id="f2a4df96-fc71-416b-ad39-d1cf6b83d97b" class="">In an isolated system with no external forces causing energy changes (no friction, only conservative forces), them the mechanical energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">E_{mec}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of the system cannot change. This is known as the conservation of mechanical energy, and can be written as:</p><figure id="6fa159c3-3702-4158-94ab-1ada81e2c338" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>K</mi><mn>2</mn></msub><mo>+</mo><msub><mi>U</mi><mn>2</mn></msub><mo>=</mo><msub><mi>K</mi><mn>1</mn></msub><mo>+</mo><msub><mi>U</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">K_2 + U_2 = K_1 + U_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="42014693-27d6-4a69-992e-1147b819e5b6" class="">in which the subscripts refer to different moments in time within the system. This principle can also be written as:</p><figure id="00fb637b-484b-4534-90be-7e93b8386049" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">Δ</mi><mi>K</mi><mo>+</mo><mi mathvariant="normal">Δ</mi><mi>U</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\Delta E_{mec} = \Delta K + \Delta U = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></div></figure><h1 id="68793f30-2340-4f88-92f5-f5c4dbdf0be3" class="">8.3 - Reading a Potential Energy Curve</h1><p id="ecd2b5d8-b16e-4f4c-8f51-2c7656551f93" class="">If we know the potential energy function <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><span></span></span> for a systemin which a one-dimensional force <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><span></span></span> acts on a particle, we can find the force as:</p><figure id="3a7e7275-ff8e-4fea-9530-a119c2620996" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mfrac><mrow><mi>d</mi><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mrow><mi>d</mi><mi>x</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">F(x) = - \frac{dU(x)}{dx}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.113em;vertical-align:-0.686em;"></span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">x</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><p id="3032277d-f41e-4eea-9659-f097b6c25cfb" class="">If <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><span></span></span> is given on a graph, then at any value of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span>, the force <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><span></span></span> is the inverse of the slope of the curve at that point, and the kinetic energy of the particle is given by:</p><figure id="37d17f94-8b53-4753-b37c-e456c2662e0f" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub><mo>−</mo><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(x) = E_{mec} - U(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span></div></figure><p id="171cad84-ac0b-445f-b283-fe579e7cd3ae" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">E_{mec}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the total mechanical energy in the system.</p><p id="8616fdab-997f-4a63-8e43-84f9aa358897" class="">A "turning point" is a point <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">x</span></span></span></span></span><span></span></span> at which the particle reverses its motion (where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">K = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span><span></span></span>).</p><p id="e3f6a6f3-d643-4524-a520-f349b1f5d330" class="">A particle is at equilibrium at points where the slope of the <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">U(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span></span></span></span></span><span></span></span> curve is zero (where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>F</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">F(x) = 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="mopen">(</span><span class="mord mathnormal">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span><span></span></span>).</p><h1 id="a4b8002e-223e-46e4-8d52-03375c9da5c7" class="">8.4 - Work Done on a System by an External Force</h1><h2 id="423be743-5d17-4760-8982-cac0c13aa6ca" class="">Important Ideas</h2><ul id="6d3b935e-9737-4791-b128-16e454df8181" class="bulleted-list"><li style="list-style-type:disc">Work <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span></span></span></span></span><span></span></span> is the energy transferred to or from a system by means of an external force acting on the system.</li></ul><ul id="c08e1c3d-cc0a-42bf-9805-53ad52eb42f2" class="bulleted-list"><li style="list-style-type:disc">When more than one force acts on a system, their net work is the transferred energy.</li></ul><ul id="15e9bdfb-5120-42aa-8812-8ef3c0b0fee2" class="bulleted-list"><li style="list-style-type:disc">When friction is not involved, the work done on the system and the change <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\Delta E_{mec}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> in the mechanical energy of the system are equal:<figure id="48065ebd-770a-47b4-9f12-d1a56fb09540" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>W</mi><mo>=</mo><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">Δ</mi><mi>K</mi><mo>+</mo><mi mathvariant="normal">Δ</mi><mi>U</mi></mrow><annotation encoding="application/x-tex">W = \Delta E_{mec} = \Delta K + \Delta U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal" style="margin-right:0.10903em;">U</span></span></span></span></span></div></figure></li></ul><ul id="f00036a0-39aa-48d1-ab9a-059fe1ad8f5a" class="bulleted-list"><li style="list-style-type:disc">When a kinetic frictional force acts within the system, then the thermal energy <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow><annotation encoding="application/x-tex">E_{th}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">h</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of the system changes. Therefore, the work done on the system is then:<figure id="2f69d6d9-178b-412c-9c68-f03ef18624cf" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>W</mi><mo>=</mo><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>m</mi><mi>e</mi><mi>c</mi></mrow></msub><mo>+</mo><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow><annotation encoding="application/x-tex">W = \Delta E_{mec} + \Delta E_{th}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">m</span><span class="mord mathnormal mtight">ec</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">h</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="71c4f864-dcbe-4da4-80f4-bb5415eae88d" class="">The change <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\Delta E_{th}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">h</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is related to the magnitude <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mi>k</mi></msub></mrow><annotation encoding="application/x-tex">F_k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of the frictional force and the magnitude <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span></span></span></span></span><span></span></span> of the displacement caused by the external force:</p><figure id="2ae3c1e0-fa89-471d-b8ad-79f1c30555dc" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi mathvariant="normal">Δ</mi><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi></mrow></msub><mo>=</mo><msub><mi>F</mi><mi>k</mi></msub><mi>d</mi></mrow><annotation encoding="application/x-tex">\Delta E_{th} = F_k d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord">Δ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="mord mathnormal mtight">h</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathnormal">d</span></span></span></span></span></div></figure></li></ul></div></article></body></html> |