882 lines
184 KiB
HTML
882 lines
184 KiB
HTML
|
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"/><title>Unit 9: Center of Mass and Linear Momentum</title><style>
|
|||
|
/* cspell:disable-file */
|
|||
|
/* webkit printing magic: print all background colors */
|
|||
|
html {
|
|||
|
-webkit-print-color-adjust: exact;
|
|||
|
}
|
|||
|
* {
|
|||
|
box-sizing: border-box;
|
|||
|
-webkit-print-color-adjust: exact;
|
|||
|
}
|
|||
|
|
|||
|
html,
|
|||
|
body {
|
|||
|
margin: 0;
|
|||
|
padding: 0;
|
|||
|
}
|
|||
|
@media only screen {
|
|||
|
body {
|
|||
|
margin: 2em auto;
|
|||
|
max-width: 900px;
|
|||
|
color: rgb(55, 53, 47);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
body {
|
|||
|
line-height: 1.5;
|
|||
|
white-space: pre-wrap;
|
|||
|
}
|
|||
|
|
|||
|
a,
|
|||
|
a.visited {
|
|||
|
color: inherit;
|
|||
|
text-decoration: underline;
|
|||
|
}
|
|||
|
|
|||
|
.pdf-relative-link-path {
|
|||
|
font-size: 80%;
|
|||
|
color: #444;
|
|||
|
}
|
|||
|
|
|||
|
h1,
|
|||
|
h2,
|
|||
|
h3 {
|
|||
|
letter-spacing: -0.01em;
|
|||
|
line-height: 1.2;
|
|||
|
font-weight: 600;
|
|||
|
margin-bottom: 0;
|
|||
|
}
|
|||
|
|
|||
|
.page-title {
|
|||
|
font-size: 2.5rem;
|
|||
|
font-weight: 700;
|
|||
|
margin-top: 0;
|
|||
|
margin-bottom: 0.75em;
|
|||
|
}
|
|||
|
|
|||
|
h1 {
|
|||
|
font-size: 1.875rem;
|
|||
|
margin-top: 1.875rem;
|
|||
|
}
|
|||
|
|
|||
|
h2 {
|
|||
|
font-size: 1.5rem;
|
|||
|
margin-top: 1.5rem;
|
|||
|
}
|
|||
|
|
|||
|
h3 {
|
|||
|
font-size: 1.25rem;
|
|||
|
margin-top: 1.25rem;
|
|||
|
}
|
|||
|
|
|||
|
.source {
|
|||
|
border: 1px solid #ddd;
|
|||
|
border-radius: 3px;
|
|||
|
padding: 1.5em;
|
|||
|
word-break: break-all;
|
|||
|
}
|
|||
|
|
|||
|
.callout {
|
|||
|
border-radius: 3px;
|
|||
|
padding: 1rem;
|
|||
|
}
|
|||
|
|
|||
|
figure {
|
|||
|
margin: 1.25em 0;
|
|||
|
page-break-inside: avoid;
|
|||
|
}
|
|||
|
|
|||
|
figcaption {
|
|||
|
opacity: 0.5;
|
|||
|
font-size: 85%;
|
|||
|
margin-top: 0.5em;
|
|||
|
}
|
|||
|
|
|||
|
mark {
|
|||
|
background-color: transparent;
|
|||
|
}
|
|||
|
|
|||
|
.indented {
|
|||
|
padding-left: 1.5em;
|
|||
|
}
|
|||
|
|
|||
|
hr {
|
|||
|
background: transparent;
|
|||
|
display: block;
|
|||
|
width: 100%;
|
|||
|
height: 1px;
|
|||
|
visibility: visible;
|
|||
|
border: none;
|
|||
|
border-bottom: 1px solid rgba(55, 53, 47, 0.09);
|
|||
|
}
|
|||
|
|
|||
|
img {
|
|||
|
max-width: 100%;
|
|||
|
}
|
|||
|
|
|||
|
@media only print {
|
|||
|
img {
|
|||
|
max-height: 100vh;
|
|||
|
object-fit: contain;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
@page {
|
|||
|
margin: 1in;
|
|||
|
}
|
|||
|
|
|||
|
.collection-content {
|
|||
|
font-size: 0.875rem;
|
|||
|
}
|
|||
|
|
|||
|
.column-list {
|
|||
|
display: flex;
|
|||
|
justify-content: space-between;
|
|||
|
}
|
|||
|
|
|||
|
.column {
|
|||
|
padding: 0 1em;
|
|||
|
}
|
|||
|
|
|||
|
.column:first-child {
|
|||
|
padding-left: 0;
|
|||
|
}
|
|||
|
|
|||
|
.column:last-child {
|
|||
|
padding-right: 0;
|
|||
|
}
|
|||
|
|
|||
|
.table_of_contents-item {
|
|||
|
display: block;
|
|||
|
font-size: 0.875rem;
|
|||
|
line-height: 1.3;
|
|||
|
padding: 0.125rem;
|
|||
|
}
|
|||
|
|
|||
|
.table_of_contents-indent-1 {
|
|||
|
margin-left: 1.5rem;
|
|||
|
}
|
|||
|
|
|||
|
.table_of_contents-indent-2 {
|
|||
|
margin-left: 3rem;
|
|||
|
}
|
|||
|
|
|||
|
.table_of_contents-indent-3 {
|
|||
|
margin-left: 4.5rem;
|
|||
|
}
|
|||
|
|
|||
|
.table_of_contents-link {
|
|||
|
text-decoration: none;
|
|||
|
opacity: 0.7;
|
|||
|
border-bottom: 1px solid rgba(55, 53, 47, 0.18);
|
|||
|
}
|
|||
|
|
|||
|
table,
|
|||
|
th,
|
|||
|
td {
|
|||
|
border: 1px solid rgba(55, 53, 47, 0.09);
|
|||
|
border-collapse: collapse;
|
|||
|
}
|
|||
|
|
|||
|
table {
|
|||
|
border-left: none;
|
|||
|
border-right: none;
|
|||
|
}
|
|||
|
|
|||
|
th,
|
|||
|
td {
|
|||
|
font-weight: normal;
|
|||
|
padding: 0.25em 0.5em;
|
|||
|
line-height: 1.5;
|
|||
|
min-height: 1.5em;
|
|||
|
text-align: left;
|
|||
|
}
|
|||
|
|
|||
|
th {
|
|||
|
color: rgba(55, 53, 47, 0.6);
|
|||
|
}
|
|||
|
|
|||
|
ol,
|
|||
|
ul {
|
|||
|
margin: 0;
|
|||
|
margin-block-start: 0.6em;
|
|||
|
margin-block-end: 0.6em;
|
|||
|
}
|
|||
|
|
|||
|
li > ol:first-child,
|
|||
|
li > ul:first-child {
|
|||
|
margin-block-start: 0.6em;
|
|||
|
}
|
|||
|
|
|||
|
ul > li {
|
|||
|
list-style: disc;
|
|||
|
}
|
|||
|
|
|||
|
ul.to-do-list {
|
|||
|
text-indent: -1.7em;
|
|||
|
}
|
|||
|
|
|||
|
ul.to-do-list > li {
|
|||
|
list-style: none;
|
|||
|
}
|
|||
|
|
|||
|
.to-do-children-checked {
|
|||
|
text-decoration: line-through;
|
|||
|
opacity: 0.375;
|
|||
|
}
|
|||
|
|
|||
|
ul.toggle > li {
|
|||
|
list-style: none;
|
|||
|
}
|
|||
|
|
|||
|
ul {
|
|||
|
padding-inline-start: 1.7em;
|
|||
|
}
|
|||
|
|
|||
|
ul > li {
|
|||
|
padding-left: 0.1em;
|
|||
|
}
|
|||
|
|
|||
|
ol {
|
|||
|
padding-inline-start: 1.6em;
|
|||
|
}
|
|||
|
|
|||
|
ol > li {
|
|||
|
padding-left: 0.2em;
|
|||
|
}
|
|||
|
|
|||
|
.mono ol {
|
|||
|
padding-inline-start: 2em;
|
|||
|
}
|
|||
|
|
|||
|
.mono ol > li {
|
|||
|
text-indent: -0.4em;
|
|||
|
}
|
|||
|
|
|||
|
.toggle {
|
|||
|
padding-inline-start: 0em;
|
|||
|
list-style-type: none;
|
|||
|
}
|
|||
|
|
|||
|
/* Indent toggle children */
|
|||
|
.toggle > li > details {
|
|||
|
padding-left: 1.7em;
|
|||
|
}
|
|||
|
|
|||
|
.toggle > li > details > summary {
|
|||
|
margin-left: -1.1em;
|
|||
|
}
|
|||
|
|
|||
|
.selected-value {
|
|||
|
display: inline-block;
|
|||
|
padding: 0 0.5em;
|
|||
|
background: rgba(206, 205, 202, 0.5);
|
|||
|
border-radius: 3px;
|
|||
|
margin-right: 0.5em;
|
|||
|
margin-top: 0.3em;
|
|||
|
margin-bottom: 0.3em;
|
|||
|
white-space: nowrap;
|
|||
|
}
|
|||
|
|
|||
|
.collection-title {
|
|||
|
display: inline-block;
|
|||
|
margin-right: 1em;
|
|||
|
}
|
|||
|
|
|||
|
.simple-table {
|
|||
|
margin-top: 1em;
|
|||
|
font-size: 0.875rem;
|
|||
|
empty-cells: show;
|
|||
|
}
|
|||
|
.simple-table td {
|
|||
|
height: 29px;
|
|||
|
min-width: 120px;
|
|||
|
}
|
|||
|
|
|||
|
.simple-table th {
|
|||
|
height: 29px;
|
|||
|
min-width: 120px;
|
|||
|
}
|
|||
|
|
|||
|
.simple-table-header-color {
|
|||
|
background: rgb(247, 246, 243);
|
|||
|
color: black;
|
|||
|
}
|
|||
|
.simple-table-header {
|
|||
|
font-weight: 500;
|
|||
|
}
|
|||
|
|
|||
|
time {
|
|||
|
opacity: 0.5;
|
|||
|
}
|
|||
|
|
|||
|
.icon {
|
|||
|
display: inline-block;
|
|||
|
max-width: 1.2em;
|
|||
|
max-height: 1.2em;
|
|||
|
text-decoration: none;
|
|||
|
vertical-align: text-bottom;
|
|||
|
margin-right: 0.5em;
|
|||
|
}
|
|||
|
|
|||
|
img.icon {
|
|||
|
border-radius: 3px;
|
|||
|
}
|
|||
|
|
|||
|
.user-icon {
|
|||
|
width: 1.5em;
|
|||
|
height: 1.5em;
|
|||
|
border-radius: 100%;
|
|||
|
margin-right: 0.5rem;
|
|||
|
}
|
|||
|
|
|||
|
.user-icon-inner {
|
|||
|
font-size: 0.8em;
|
|||
|
}
|
|||
|
|
|||
|
.text-icon {
|
|||
|
border: 1px solid #000;
|
|||
|
text-align: center;
|
|||
|
}
|
|||
|
|
|||
|
.page-cover-image {
|
|||
|
display: block;
|
|||
|
object-fit: cover;
|
|||
|
width: 100%;
|
|||
|
max-height: 30vh;
|
|||
|
}
|
|||
|
|
|||
|
.page-header-icon {
|
|||
|
font-size: 3rem;
|
|||
|
margin-bottom: 1rem;
|
|||
|
}
|
|||
|
|
|||
|
.page-header-icon-with-cover {
|
|||
|
margin-top: -0.72em;
|
|||
|
margin-left: 0.07em;
|
|||
|
}
|
|||
|
|
|||
|
.page-header-icon img {
|
|||
|
border-radius: 3px;
|
|||
|
}
|
|||
|
|
|||
|
.link-to-page {
|
|||
|
margin: 1em 0;
|
|||
|
padding: 0;
|
|||
|
border: none;
|
|||
|
font-weight: 500;
|
|||
|
}
|
|||
|
|
|||
|
p > .user {
|
|||
|
opacity: 0.5;
|
|||
|
}
|
|||
|
|
|||
|
td > .user,
|
|||
|
td > time {
|
|||
|
white-space: nowrap;
|
|||
|
}
|
|||
|
|
|||
|
input[type="checkbox"] {
|
|||
|
transform: scale(1.5);
|
|||
|
margin-right: 0.6em;
|
|||
|
vertical-align: middle;
|
|||
|
}
|
|||
|
|
|||
|
p {
|
|||
|
margin-top: 0.5em;
|
|||
|
margin-bottom: 0.5em;
|
|||
|
}
|
|||
|
|
|||
|
.image {
|
|||
|
border: none;
|
|||
|
margin: 1.5em 0;
|
|||
|
padding: 0;
|
|||
|
border-radius: 0;
|
|||
|
text-align: center;
|
|||
|
}
|
|||
|
|
|||
|
.code,
|
|||
|
code {
|
|||
|
background: rgba(135, 131, 120, 0.15);
|
|||
|
border-radius: 3px;
|
|||
|
padding: 0.2em 0.4em;
|
|||
|
border-radius: 3px;
|
|||
|
font-size: 85%;
|
|||
|
tab-size: 2;
|
|||
|
}
|
|||
|
|
|||
|
code {
|
|||
|
color: #eb5757;
|
|||
|
}
|
|||
|
|
|||
|
.code {
|
|||
|
padding: 1.5em 1em;
|
|||
|
}
|
|||
|
|
|||
|
.code-wrap {
|
|||
|
white-space: pre-wrap;
|
|||
|
word-break: break-all;
|
|||
|
}
|
|||
|
|
|||
|
.code > code {
|
|||
|
background: none;
|
|||
|
padding: 0;
|
|||
|
font-size: 100%;
|
|||
|
color: inherit;
|
|||
|
}
|
|||
|
|
|||
|
blockquote {
|
|||
|
font-size: 1.25em;
|
|||
|
margin: 1em 0;
|
|||
|
padding-left: 1em;
|
|||
|
border-left: 3px solid rgb(55, 53, 47);
|
|||
|
}
|
|||
|
|
|||
|
.bookmark {
|
|||
|
text-decoration: none;
|
|||
|
max-height: 8em;
|
|||
|
padding: 0;
|
|||
|
display: flex;
|
|||
|
width: 100%;
|
|||
|
align-items: stretch;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-title {
|
|||
|
font-size: 0.85em;
|
|||
|
overflow: hidden;
|
|||
|
text-overflow: ellipsis;
|
|||
|
height: 1.75em;
|
|||
|
white-space: nowrap;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-text {
|
|||
|
display: flex;
|
|||
|
flex-direction: column;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-info {
|
|||
|
flex: 4 1 180px;
|
|||
|
padding: 12px 14px 14px;
|
|||
|
display: flex;
|
|||
|
flex-direction: column;
|
|||
|
justify-content: space-between;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-image {
|
|||
|
width: 33%;
|
|||
|
flex: 1 1 180px;
|
|||
|
display: block;
|
|||
|
position: relative;
|
|||
|
object-fit: cover;
|
|||
|
border-radius: 1px;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-description {
|
|||
|
color: rgba(55, 53, 47, 0.6);
|
|||
|
font-size: 0.75em;
|
|||
|
overflow: hidden;
|
|||
|
max-height: 4.5em;
|
|||
|
word-break: break-word;
|
|||
|
}
|
|||
|
|
|||
|
.bookmark-href {
|
|||
|
font-size: 0.75em;
|
|||
|
margin-top: 0.25em;
|
|||
|
}
|
|||
|
|
|||
|
.sans { font-family: ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol"; }
|
|||
|
.code { font-family: "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace; }
|
|||
|
.serif { font-family: Lyon-Text, Georgia, ui-serif, serif; }
|
|||
|
.mono { font-family: iawriter-mono, Nitti, Menlo, Courier, monospace; }
|
|||
|
.pdf .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK JP'; }
|
|||
|
.pdf:lang(zh-CN) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK SC'; }
|
|||
|
.pdf:lang(zh-TW) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK TC'; }
|
|||
|
.pdf:lang(ko-KR) .sans { font-family: Inter, ui-sans-serif, -apple-system, BlinkMacSystemFont, "Segoe UI", Helvetica, "Apple Color Emoji", Arial, sans-serif, "Segoe UI Emoji", "Segoe UI Symbol", 'Twemoji', 'Noto Color Emoji', 'Noto Sans CJK KR'; }
|
|||
|
.pdf .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
|||
|
.pdf:lang(zh-CN) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
|||
|
.pdf:lang(zh-TW) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
|||
|
.pdf:lang(ko-KR) .code { font-family: Source Code Pro, "SFMono-Regular", Menlo, Consolas, "PT Mono", "Liberation Mono", Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
|||
|
.pdf .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK JP'; }
|
|||
|
.pdf:lang(zh-CN) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK SC'; }
|
|||
|
.pdf:lang(zh-TW) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK TC'; }
|
|||
|
.pdf:lang(ko-KR) .serif { font-family: PT Serif, Lyon-Text, Georgia, ui-serif, serif, 'Twemoji', 'Noto Color Emoji', 'Noto Serif CJK KR'; }
|
|||
|
.pdf .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK JP'; }
|
|||
|
.pdf:lang(zh-CN) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK SC'; }
|
|||
|
.pdf:lang(zh-TW) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK TC'; }
|
|||
|
.pdf:lang(ko-KR) .mono { font-family: PT Mono, iawriter-mono, Nitti, Menlo, Courier, monospace, 'Twemoji', 'Noto Color Emoji', 'Noto Sans Mono CJK KR'; }
|
|||
|
.highlight-default {
|
|||
|
color: rgba(55, 53, 47, 1);
|
|||
|
}
|
|||
|
.highlight-gray {
|
|||
|
color: rgba(120, 119, 116, 1);
|
|||
|
fill: rgba(120, 119, 116, 1);
|
|||
|
}
|
|||
|
.highlight-brown {
|
|||
|
color: rgba(159, 107, 83, 1);
|
|||
|
fill: rgba(159, 107, 83, 1);
|
|||
|
}
|
|||
|
.highlight-orange {
|
|||
|
color: rgba(217, 115, 13, 1);
|
|||
|
fill: rgba(217, 115, 13, 1);
|
|||
|
}
|
|||
|
.highlight-yellow {
|
|||
|
color: rgba(203, 145, 47, 1);
|
|||
|
fill: rgba(203, 145, 47, 1);
|
|||
|
}
|
|||
|
.highlight-teal {
|
|||
|
color: rgba(68, 131, 97, 1);
|
|||
|
fill: rgba(68, 131, 97, 1);
|
|||
|
}
|
|||
|
.highlight-blue {
|
|||
|
color: rgba(51, 126, 169, 1);
|
|||
|
fill: rgba(51, 126, 169, 1);
|
|||
|
}
|
|||
|
.highlight-purple {
|
|||
|
color: rgba(144, 101, 176, 1);
|
|||
|
fill: rgba(144, 101, 176, 1);
|
|||
|
}
|
|||
|
.highlight-pink {
|
|||
|
color: rgba(193, 76, 138, 1);
|
|||
|
fill: rgba(193, 76, 138, 1);
|
|||
|
}
|
|||
|
.highlight-red {
|
|||
|
color: rgba(212, 76, 71, 1);
|
|||
|
fill: rgba(212, 76, 71, 1);
|
|||
|
}
|
|||
|
.highlight-gray_background {
|
|||
|
background: rgba(241, 241, 239, 1);
|
|||
|
}
|
|||
|
.highlight-brown_background {
|
|||
|
background: rgba(244, 238, 238, 1);
|
|||
|
}
|
|||
|
.highlight-orange_background {
|
|||
|
background: rgba(251, 236, 221, 1);
|
|||
|
}
|
|||
|
.highlight-yellow_background {
|
|||
|
background: rgba(251, 243, 219, 1);
|
|||
|
}
|
|||
|
.highlight-teal_background {
|
|||
|
background: rgba(237, 243, 236, 1);
|
|||
|
}
|
|||
|
.highlight-blue_background {
|
|||
|
background: rgba(231, 243, 248, 1);
|
|||
|
}
|
|||
|
.highlight-purple_background {
|
|||
|
background: rgba(244, 240, 247, 0.8);
|
|||
|
}
|
|||
|
.highlight-pink_background {
|
|||
|
background: rgba(249, 238, 243, 0.8);
|
|||
|
}
|
|||
|
.highlight-red_background {
|
|||
|
background: rgba(253, 235, 236, 1);
|
|||
|
}
|
|||
|
.block-color-default {
|
|||
|
color: inherit;
|
|||
|
fill: inherit;
|
|||
|
}
|
|||
|
.block-color-gray {
|
|||
|
color: rgba(120, 119, 116, 1);
|
|||
|
fill: rgba(120, 119, 116, 1);
|
|||
|
}
|
|||
|
.block-color-brown {
|
|||
|
color: rgba(159, 107, 83, 1);
|
|||
|
fill: rgba(159, 107, 83, 1);
|
|||
|
}
|
|||
|
.block-color-orange {
|
|||
|
color: rgba(217, 115, 13, 1);
|
|||
|
fill: rgba(217, 115, 13, 1);
|
|||
|
}
|
|||
|
.block-color-yellow {
|
|||
|
color: rgba(203, 145, 47, 1);
|
|||
|
fill: rgba(203, 145, 47, 1);
|
|||
|
}
|
|||
|
.block-color-teal {
|
|||
|
color: rgba(68, 131, 97, 1);
|
|||
|
fill: rgba(68, 131, 97, 1);
|
|||
|
}
|
|||
|
.block-color-blue {
|
|||
|
color: rgba(51, 126, 169, 1);
|
|||
|
fill: rgba(51, 126, 169, 1);
|
|||
|
}
|
|||
|
.block-color-purple {
|
|||
|
color: rgba(144, 101, 176, 1);
|
|||
|
fill: rgba(144, 101, 176, 1);
|
|||
|
}
|
|||
|
.block-color-pink {
|
|||
|
color: rgba(193, 76, 138, 1);
|
|||
|
fill: rgba(193, 76, 138, 1);
|
|||
|
}
|
|||
|
.block-color-red {
|
|||
|
color: rgba(212, 76, 71, 1);
|
|||
|
fill: rgba(212, 76, 71, 1);
|
|||
|
}
|
|||
|
.block-color-gray_background {
|
|||
|
background: rgba(241, 241, 239, 1);
|
|||
|
}
|
|||
|
.block-color-brown_background {
|
|||
|
background: rgba(244, 238, 238, 1);
|
|||
|
}
|
|||
|
.block-color-orange_background {
|
|||
|
background: rgba(251, 236, 221, 1);
|
|||
|
}
|
|||
|
.block-color-yellow_background {
|
|||
|
background: rgba(251, 243, 219, 1);
|
|||
|
}
|
|||
|
.block-color-teal_background {
|
|||
|
background: rgba(237, 243, 236, 1);
|
|||
|
}
|
|||
|
.block-color-blue_background {
|
|||
|
background: rgba(231, 243, 248, 1);
|
|||
|
}
|
|||
|
.block-color-purple_background {
|
|||
|
background: rgba(244, 240, 247, 0.8);
|
|||
|
}
|
|||
|
.block-color-pink_background {
|
|||
|
background: rgba(249, 238, 243, 0.8);
|
|||
|
}
|
|||
|
.block-color-red_background {
|
|||
|
background: rgba(253, 235, 236, 1);
|
|||
|
}
|
|||
|
.select-value-color-pink { background-color: rgba(245, 224, 233, 1); }
|
|||
|
.select-value-color-purple { background-color: rgba(232, 222, 238, 1); }
|
|||
|
.select-value-color-green { background-color: rgba(219, 237, 219, 1); }
|
|||
|
.select-value-color-gray { background-color: rgba(227, 226, 224, 1); }
|
|||
|
.select-value-color-opaquegray { background-color: rgba(255, 255, 255, 0.0375); }
|
|||
|
.select-value-color-orange { background-color: rgba(250, 222, 201, 1); }
|
|||
|
.select-value-color-brown { background-color: rgba(238, 224, 218, 1); }
|
|||
|
.select-value-color-red { background-color: rgba(255, 226, 221, 1); }
|
|||
|
.select-value-color-yellow { background-color: rgba(253, 236, 200, 1); }
|
|||
|
.select-value-color-blue { background-color: rgba(211, 229, 239, 1); }
|
|||
|
|
|||
|
.checkbox {
|
|||
|
display: inline-flex;
|
|||
|
vertical-align: text-bottom;
|
|||
|
width: 16;
|
|||
|
height: 16;
|
|||
|
background-size: 16px;
|
|||
|
margin-left: 2px;
|
|||
|
margin-right: 5px;
|
|||
|
}
|
|||
|
|
|||
|
.checkbox-on {
|
|||
|
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20width%3D%2216%22%20height%3D%2216%22%20fill%3D%22%2358A9D7%22%2F%3E%0A%3Cpath%20d%3D%22M6.71429%2012.2852L14%204.9995L12.7143%203.71436L6.71429%209.71378L3.28571%206.2831L2%207.57092L6.71429%2012.2852Z%22%20fill%3D%22white%22%2F%3E%0A%3C%2Fsvg%3E");
|
|||
|
}
|
|||
|
|
|||
|
.checkbox-off {
|
|||
|
background-image: url("data:image/svg+xml;charset=UTF-8,%3Csvg%20width%3D%2216%22%20height%3D%2216%22%20viewBox%3D%220%200%2016%2016%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%3E%0A%3Crect%20x%3D%220.75%22%20y%3D%220.75%22%20width%3D%2214.5%22%20height%3D%2214.5%22%20fill%3D%22white%22%20stroke%3D%22%2336352F%22%20stroke-width%3D%221.5%22%2F%3E%0A%3C%2Fsvg%3E");
|
|||
|
}
|
|||
|
|
|||
|
</style></head><body><article id="315e1027-b221-49b7-8562-3b30f9aeea7c" class="page sans"><header><h1 class="page-title">Unit 9: Center of Mass and Linear Momentum</h1></header><div class="page-body"><h1 id="a4ff87e4-18c0-4743-8b7e-d50957466c79" class="">9.1 - Center of Mass</h1><p id="0e3b1554-9594-4562-9367-33fb43197941" class="">Important idea: the center of mass of a system of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">n</span></span></span></span></span><span></span></span> particles, with a total mass <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span><span></span></span> is the point with coordinates:</p><div id="055718d6-9879-40d5-a84c-6f82a5d9ab80" class="column-list"><div id="4585f3b6-e178-4131-88e2-cadac860676c" style="width:33.333333333333336%" class="column"><figure id="7b13da20-10bf-486f-8d32-c4aae1c791b6" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>x</mi><mrow><mi>c</mi><mi>o</mi><mi>m</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mi>M</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>m</mi><mi>i</mi></msub><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_{com} = \frac{1}{M} \sum_{i=1}^n m_i x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.929066em;vertical-align:-1.277669em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" styl
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.929066em;vertical-align:-1.277669em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.02778em;">r</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.17994em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="c775c8d0-37f6-4bd6-8b4d-25796e551e9b" class="">For a solid mass, such as a ball, which contains a massive number of particles, the object can be treated as a continuous distribution of matter. The "particles" then become differential mass elements <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mi>m</mi></mrow><annotation encoding="application/x-tex">dm</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathnormal">d</span><span class="mord mathnormal">m</span></span></span></span></span><span></span></span>, and the coordinates for the center of mass can be represented as:</p><div id="3ca22c2d-a507-41ae-bde6-94078dc0faed" class="column-list"><div id="99ce4d8c-493e-44f6-88b5-8c3494682992" style="width:33.333333333333336%" class="column"><figure id="9c1649df-7cf2-4519-90f7-28358a9238c5" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>x</mi><mrow><mi>c</mi><mi>o</mi><mi>m</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mi>M</mi></mfrac><mo>∫</mo><mi>x</mi><mtext> </mtext><mi>d</mi><mi>m</mi></mrow><annotation encoding="application/x-tex">x_{com} = \frac{1}{M} \int x \space dm</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.22225em;vertical-align:-0.86225em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-w
|
|||
|
an object has a point, a line, or a plane of symmetry. The center of mass of such
|
|||
|
an object then lies at that point, on that line, or in that plane.</div></figure><h1 id="16b23210-9d59-4ed1-bb1a-bc0aac6e0659" class="">9.2 - Newton's Second Law for a System of Particles</h1><p id="1f50b970-fd06-48de-9aef-c6f2b6d11386" class="">The motion of the center of mass of any system of particles is governed by Newton’s second law for a system of particles, which is:</p><figure id="f38a47a5-59a6-43db-b89f-959fccfc6802" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>=</mo><mi>M</mi><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>c</mi><mi>o</mi><mi>m</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec F_{net} = M\vec a_{com}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="8f985bc1-2fc8-4629-84f7-90d27b1b529d" class="">where <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec F_{net}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the net force of all <em>external</em> forces acting on the system, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span></span></span></span></span><span></span></span> is the total mass of the system, and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mover accent="true"><mi>a</mi><mo>⃗</mo></mover><mrow><mi>c</mi><mi>o</mi><mi>m</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec a_{com}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">a</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.2355em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the acceleration of the system's center of mass.</p><h1 id="3b27bd12-a9cd-4220-9e6c-b47570482de1" class="">9.3 - Linear Momentum</h1><p id="18cd889a-6648-4742-b688-6276f54d4739" class="">For a single particle, we can define a quantity <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>p</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span></span></span></span><span></span></span> called its linear momentum as:</p><figure id="e9db2cb5-bf1f-4b99-a80b-4aeba4aba23e" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mo>=</mo><mi>m</mi><mover accent="true"><mi>v</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec p = m \vec v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.714em;vertical-align:0em;"></span><span class="mord mathnormal">m</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="420e9d6f-9aa9-4457-a3b6-5097c5f9a259" class="">which is a vector quantity in the same direction as the particle's velocity.</p><p id="456a5060-f346-4ebf-bec3-827adf9726ac" class="">Newton's second law can also be written in terms of momentum:</p><figure id="a185b410-8522-4fff-97ff-8d9f2369a587" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>d</mi><mover accent="true"><mi>p</mi><mo>⃗</mo></mover></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec F_{net} = \frac{d \vec p}{dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.077em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.391em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure><h2 id="5ef0d54d-5420-498d-a166-e46c0e763bbd" class="">Systems of Particles</h2><p id="872c555d-2154-49ac-a284-ea7f31405822" class="">For a system of particles, these relations can be written as the following:</p><div id="a8285e47-ab36-4c01-b18e-52b27dc0d3e3" class="column-list"><div id="58c877d1-20c4-4e4b-b0bf-ebaa1533a3d3" style="width:50%" class="column"><figure id="7d57ee9c-1229-4bdf-887f-b199dd2addc8" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>P</mi><mo>⃗</mo></mover><mo>=</mo><mi>M</mi><msub><mover accent="true"><mi>v</mi><mo>⃗</mo></mover><mrow><mi>c</mi><mi>o</mi><mi>m</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec P = M \vec v_{com}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.864em;vertical-align:-0.15em;"></span><span class="mord mathnormal" style="margin-right:0.10903em;">M</span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.03588em;">v</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.20772em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure></div><div id="3bd8701a-68d6-48a2-a5c6-d3ddbc2e9ee2" style="width:50%" class="column"><figure id="47558e8f-b4dc-4371-be93-fa96486b2c5b" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mrow><mi>n</mi><mi>e</mi><mi>t</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>d</mi><mover accent="true"><mi>P</mi><mo>⃗</mo></mover></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\vec F_{net} = \frac{d \vec P}{dt}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.2805559999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">n</span><span class="mord mathnormal mtight">e</span><span class="mord mathnormal mtight">t</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.32933em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.64333em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathnormal">d</span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></div></figure></div></div><h1 id="e58a4727-3fec-4e6f-856e-49ce81058702" class="">9.4 - Collision and Impulse</h1><h2 id="ef653b94-e231-4398-8075-858137d4d14a" class="">Impulse-Linear Momentum Theorem</h2><p id="a0a87bab-b131-4aef-ae76-ed7f1f7050ad" class="">The change in a body's linear momentum over time during a collision is the <strong>impulse</strong>, <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>J</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec J</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span><span></span></span>.</p><figure id="99f57e2b-04b3-4629-9f29-af1d98405c2e" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mi>f</mi></msub><mo>−</mo><msub><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mi>i</mi></msub><mo>=</mo><mi mathvariant="normal">Δ</mi><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mo>=</mo><mover accent="true"><mi>J</mi><mo>⃗</mo></mover></mrow><annotation encoding="application/x-tex">\vec p_f - \vec p_i = \Delta \vec p = \vec J</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord">Δ</span><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="d6c76ac9-eca1-4816-b91b-3b179e3e9487" class="">The impulse can also be written as the integral of the force <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\vec F(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.21633em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><span></span></span> exerted on the body in the collision:</p><figure id="ca3e6a9d-c2bb-4fd9-a62c-77b716588f54" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mover accent="true"><mi>J</mi><mo>⃗</mo></mover><mo>=</mo><msubsup><mo>∫</mo><msub><mi>t</mi><mi>i</mi></msub><msub><mi>t</mi><mi>f</mi></msub></msubsup><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mtext> </mtext><mi>d</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\vec J = \int_{t_i}^{t_f} \vec F(t) \space dt</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9663299999999999em;vertical-align:0em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.06882999999999997em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.555506em;vertical-align:-1.01205em;"></span><span class="mop"><span class="mop op-symbol large-op" style="margin-right:0.44445em;position:relative;top:-0.0011249999999999316em;">∫</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.543456em;"><span style="top:-1.7880500000000004em;margin-left:-0.44445em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3280857142857143em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span><span style="top:-3.8129000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathnormal mtight">t</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3448em;"><span style="top:-2.3487714285714287em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29011428571428566em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.01205em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span><span class="mspace"> </span><span class="mord mathnormal">d</span><span class="mord mathnormal">t</span></span></span></span></span></div></figure><h2 id="364747d1-0f63-4478-9204-b3c16a1d6c40" class="">One-Dimensional Motion</h2><p id="7fb9faae-f52c-453a-bed2-ffaffc4b2459" class="">If <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>F</mi><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub></mrow><annotation encoding="application/x-tex">F_{avg}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> is the average magnitude of <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>F</mi><mo>⃗</mo></mover><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\vec F(t)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.21633em;vertical-align:-0.25em;"></span><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">F</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathnormal">t</span><span class="mclose">)</span></span></span></span></span><span></span></span> during the collision and <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">\Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span><span></span></span> is the duration of the collision, then for one-dimensional motion the impulse can be simplified as</p><figure id="493f14f1-1f41-4c97-847d-a6d8bab465c8" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>J</mi><mo>=</mo><msub><mi>F</mi><mrow><mi>a</mi><mi>v</mi><mi>g</mi></mrow></msub><mi mathvariant="normal">Δ</mi><mi>t</mi></mrow><annotation encoding="application/x-tex">J = F_{avg} \Delta t</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:0.09618em;">J</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">a</span><span class="mord mathnormal mtight" style="margin-right:0.03588em;">vg</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">Δ</span><span class="mord mathnormal">t</span></span></span></span></span></div></figure><h2 id="bce10b72-df15-4675-80f5-59f241748a90" class="">Steady Stream of Collisions with a Fixed Body</h2><p id="e0933adf-4d45-4d50-8e32-ef7396e9c612" class="">When a steady stream of bodies, each with mass <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathnormal">m</span></span></span></span></span><span></span></span> and speed <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditab
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.252438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><h1 id="684ec395-a864-4f39-9435-8ce9603b8358" class="">9.6 - Momentum and Kinetic Energy in Collisions</h1><p id="a47127a0-cc32-4c8e-90d5-7470bd747e26" class="">In an inelastic collision of two bodies, the kinetic energy of the two-body system is not conserved. If the system is closed and isolated, the total linear momentum of the system must be conserved, which we can write in vector form as:</p><figure id="7a0c6969-29ce-4cf9-87df-02de4f38daac" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mrow><mn>1</mn><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mrow><mn>2</mn><mi>i</mi></mrow></msub><mo>=</mo><msub><mover accent="true"><mi>P</mi><mo>⃗</mo></mover><mrow><mn>2</mn><mi>i</mi></mrow></msub><mo>+</mo><msub><mover accent="true"><mi>p</mi><mo>⃗</mo></mover><mrow><mn>2</mn><mi>f</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\vec p_{1i} + \vec p_{2i} = \vec P_{2i} + \vec p_{2f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9084399999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.000108em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.714em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal">p</span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="152acdf8-9fc6-46d4-84ed-cdebed9faa66" class="">where the <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathnormal">i</span></span></span></span></span><span></span></span> subscripts are before the collision and the <style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><span data-token-index="0" contenteditable="false" class="notion-text-equation-token" style="user-select:all;-webkit-user-select:all;-moz-user-select:all"><span></span><span><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathnormal" style="margin-right:0.10764em;">f</span></span></span></span></span><span></span></span> subscripts are the values right after the collision.</p><p id="3cfcdbf9-bb36-42aa-9426-3596517c05c0" class="">If the motion of the bodies is along a single axis, the collision is one-dimensional and we can write the equation in terms of velocity components along that axis:</p><figure id="ea061b60-b1f0-4520-977c-757a4b4c2622" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>m</mi><mn>1</mn></msub><msub><mi>v</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub><msub><mi>v</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><mo>=</mo><msub><mi>m</mi><mn>1</mn></msub><msub><mi>v</mi><mrow><mn>1</mn><mi>f</mi></mrow></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub><msub><mi>v</mi><mrow><mn>2</mn><mi>f</mi></mrow></msub></mrow><annotation encoding="application/x-tex">m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathnormal mtight">co</span><span class="mord mathnormal mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span></span></span> of the center of mass cannot be changed by the collision.</p><h1 id="e012a084-e251-4a22-865f-bc76d621dc8b" class="">9.7 - Elastic Collisions in One Dimension</h1><p id="5ea4733f-1051-4525-b255-37aa0f436e8c" class="">An elastic collision is a special type of collision in which the kinetic energy of a system of colliding bodies is conserved. If the system is closed and isolated, its linear momentum is also conserved. For a one-dimensional collision in which body 2 is a target and body 1 is an incoming projectile, conservation of kinetic energy and linear momentum yield the following expressions for the velocities immediately after the collision:</p><div id="f9aba768-76ca-4125-9647-db7782ffa217" class="column-list"><div id="6ff94e92-95d4-4541-93d8-e47ab9a230ea" style="width:50%" class="column"><figure id="49d6d910-15c7-4542-8fdb-3a7594940eee" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>v</mi><mrow><mn>1</mn><mi>f</mi></mrow></msub><mo>=</mo><mfrac><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>−</mo><msub><mi>m</mi><mn>2</mn></msub></mrow><mrow><msub><mi>m</mi><mn>1</mn></msub><mo>+</mo><msub><mi>m</mi><mn>2</mn></msub></mrow></mfrac><msub><mi>v</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub></mrow><annotation encoding="application/x-tex">v_{1f} = \frac{m_1-m_2}{m_1+m_2} v_{1i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.09633em;vertical-align:-0.8360000000000001em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.2603300000000002em;"><span style="top:-2.3139999999999996em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathnormal">m</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span>
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1163299999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.252438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.252438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9663299999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord mathnormal" style="margin-right:0.13889em;">P</span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.15216em;"><span class="overlay" style="height:0.714em;width:0.471em;"><svg width='0.471em' height='0.714em' style='width:0.471em' viewBox='0 0 471 714' preserveAspectRatio='xMinYMin'><path d='M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5
|
|||
|
3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11
|
|||
|
10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63
|
|||
|
-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1
|
|||
|
-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59
|
|||
|
H213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359
|
|||
|
c-16-25.333-24-45-24-59z'/></svg></span></span></span></span></span></span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight" style="margin-right:0.10764em;">f</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></div></figure><p id="4f76dadb-87c8-43c9-8fa1-0cd8e1290645" class="">In the case that the collision is <em>also </em><strong>elastic</strong>, then the total kinetic energy is also conserved:</p><figure id="5b614306-ee95-459b-9f0f-1fcb0fba9cf9" class="equation"><style>@import url('https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.13.2/katex.min.css')</style><div class="equation-container"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><msub><mi>K</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>K</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><mo>=</mo><msub><mi>K</mi><mrow><mn>1</mn><mi>f</mi></mrow></msub><mo>+</mo><msub><mi>K</mi><mrow><mn>2</mn><mi>f</mi></mrow></msub></mrow><annotation encoding="application/x-tex">K_{1i} + K_{2i} = K_{1f} + K_{2f}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span><span class="mord mathnormal mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">K</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3361079999999999em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizi
|
|||
|
</p></div></article></body></html>
|