Video 2: Now with CalculusDeriving Kinematics EquationsChange in Velocitya⃗=dvdt\vec a = \frac{dv}{dt}a=dtdva⃗∗dt=dv\vec a * dt = dva∗dt=dv∫0tadt=∫vivfdv\int_0^t a dt = \int_{v_i}^{v_f} dv∫0tadt=∫vivfdvat∣0t=v∣vivfat |_0^t = v|_{v_i}^{v_f}at∣0t=v∣vivfat−a(0)=vf−viat - a(0) = v_f - v_iat−a(0)=vf−vivf=vi+atv_f = v_i + atvf=vi+atChange in Positionv=vi+atv = v_i + atv=vi+atdxdt=vi+at\frac{dx}{dt} = v_i + atdtdx=vi+atdx=(vi+at)dtdx = (v_i + at)dtdx=(vi+at)dt∫xixfdx=∫0t(vi+at)dt\int_{x_i}^{x_f} dx = \int_0^t (v_i + at)dt∫xixfdx=∫0t(vi+at)dtx∣xixf=(vit+12at2)∣0tx|_{x_i}^{x_f} = (v_it + \frac{1}{2} a t^2)|_{0}^{t}x∣xixf=(vit+21at2)∣0txf−xi=(vit+12at2)−0x_f - x_i = (v_i t + \frac{1}{2}at^2) - 0xf−xi=(vit+21at2)−0Δx=vit+12at2\Delta x = v_i t + \frac{1}{2}at^2Δx=vit+21at2Bonus Kinematics Equationa⃗=dvdt\vec a = \frac{dv}{dt}a=dtdva⃗=dvdxdxdt\vec a = \frac{dv}{dx} \frac{dx}{dt}a=dxdvdtdxa⃗=v⃗dvdx\vec a = \vec v \frac{dv}{dx}a=vdxdv∫xixfa⃗dx=∫v0vfvdv\int_{x_i}^{x_f} \vec a dx = \int_{v_0}^{v_f} v dv∫xixfadx=∫v0vfvdvax∣xixf=12v2∣v0vfax |_{x_i}^{x_f} = \frac{1}{2} v^2 |_{v_0}^{v_f}ax∣xixf=21v2∣v0vf2aΔx=vf2−vi22 a \Delta x = v_f^2 - v_i^22aΔx=vf2−vi2vf2=vi2+2aΔxv_f^2 = v_i^2 + 2a\Delta{x}vf2=vi2+2aΔx